[BZOJ2797][Poi2012]Squarks
2797: [Poi2012]Squarks
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 211 Solved: 89
[Submit][Status][Discuss]
Description
设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj。
现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn。
Input
第一行一个正整数n (3<=n<=300)。
第二行n*(n-1)/2个正整数(每个正整数不超过10^8),表示任取两个Xi,Xj(i≠j)算出的n*(n-1)/2个和。
Output
第一行一个正整数k,表示方案数。测试数据保证至少存在一种方案。
下面k行每行给出递增的n个正整数。方案按照{Xi}的最小值从大到小输出。
Sample Input
4
3 5 4 7 6 5
Sample Input 2
4
11 17 12 20 21 15
Sample Output
2
4 7 8 13
3 8 9 12
Sample Output 1
1
1 2 3 4
HINT
Source
先把数列排一下序,a1一定是x1+x2,a2一定是x1+x3。如果知道x2+x3的话,就可以求出x1~x3了。
这样的话可以枚举x2+x3,然后求出x1~x3之后删掉这里面的和,最小的一定是x1+x4了,这样又可以求出来x4。
因为n比较小,这样就可以过了。
#include<set>
#include<cstdio>
#include<algorithm>
#define N 305
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,tot,a[N*N],ans[N][N],x[N];
multiset<int>s;
void solve(int a3)
{
s.clear();
for(int i=;i<=n*(n-)/;i++)
s.insert(a[i]);
if(a[]+a[]+a3&)return;
x[]=a[]+a[]-a3>>;
x[]=a[]-a[]+a3>>;
x[]=-a[]+a[]+a3>>;
if(x[]<||x[]<||x[]<)return;
s.erase(s.find(a[]));
s.erase(s.find(a[]));
s.erase(s.find(a3));
for(int i=;i<=n;i++)
{
x[i]=*s.begin()-x[];
if(x[i]<)return;
for(int j=;j<i;j++)
{
int t=x[j]+x[i];
if(s.find(t)==s.end())return;
s.erase(s.find(t));
}
}
for(int i=;i<=n;i++)
if(x[i]<=x[i-])return;
for(int i=;i<=n;i++)
ans[tot][i]=x[i];
tot++;
}
int main()
{
n=read();
for(int i=;i<=n*(n-)/;i++)a[i]=read();
sort(a+,a+n*(n-)/+);
for(int i=;i<=n;i++)
if(i==||a[i]!=a[i-])
solve(a[i]);
printf("%d\n",tot);
for(int j=;j<tot;j++,puts(""))
for(int i=;i<=n;i++)
printf("%d ",ans[j][i]);
}
(PS:我发现有很多人特别快,不知道是怎么做的。。)
[BZOJ2797][Poi2012]Squarks的更多相关文章
- 【BZOJ2797】[Poi2012]Squarks 暴力乱搞
[BZOJ2797][Poi2012]Squarks Description 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj.现在所有取法共n*(n ...
- [POI2012]Squarks
[POI2012]Squarks 题目大意: 设有\(n\)个互不相同的正整数\(\{X_1,X_2,...,X_n\}\),任取两个\(X_i,X_j(i\ne j)\),能算出\(X_i+X_j\ ...
- bzoj 2797 [Poi2012]Squarks 枚举一个,推出所有
题目大意 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj. 现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn. 输出所有满足条件 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 2795: [Poi2012]A Horrible Poem
2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 484 Solved: 235[Subm ...
- [BZOJ2803][Poi2012]Prefixuffix
2803: [Poi2012]Prefixuffix Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 219 Solved: 95[Submit][St ...
- [BZOJ2799][Poi2012]Salaries
2799: [Poi2012]Salaries Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 91 Solved: 54[Submit][Statu ...
- POI2012 (持续更新中)
Distance Well Vouchers Cloakroom A Horrible Poem Rendezvous Fibonacci Representation Squarks Salarie ...
随机推荐
- App 开发:Hybrid 架构下的 HTML5 应用加速方案
在移动 App 开发领域,主流的开发模式可分为 Native.Hybrid.WebApp 三种方式.然而 2013 年,纯 WebApp 开发模式的发展受到一定挫折,以 Facebook 为代表的独立 ...
- 小鼠迷宫问题【sdut1157】【dfs,bfs综合题目】
小鼠迷宫问题 Time Limit: 1500ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 小鼠a与小鼠b身处一个m×n的迷宫中,如图所示.每一个方格表示迷宫中 ...
- sdut 2449走迷宫【最简单的dfs应用】
走迷宫 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_ 题目描述 一个由n * m 个格子组成的迷宫,起点是(1, 1), 终点是(n, m) ...
- wp8 入门到精通 测量代码执行时间
Stopwatch time = new Stopwatch(); byte[] target = new byte[size]; for (int j = 0; j < size; j++) ...
- WPF QuickStart系列之数据绑定(Data Binding)
这篇博客将展示WPF DataBinding的内容. 首先看一下WPF Data Binding的概览, Binding Source可以是任意的CLR对象,或者XML文件等,Binding Targ ...
- 遍历Map
Map map = new HashMap(); map.put("1", "value1"); map.put("2", "va ...
- 使用python做科学计算
这里总结一个guide,主要针对刚开始做数据挖掘和数据分析的同学 说道统计分析工具你一定想到像excel,spss,sas,matlab以及R语言.R语言是这里面比较火的,它的强项是强大的绘图功能以及 ...
- UVA 12232 Exclusive-OR(并查集+思想)
题意:给你n个数,接着三种操作: I p v :告诉你 Xp = v I p q v :告诉你 Xp ^ Xq = v Q k p1 p2 … pk:问你k个数连续异或的结果 注意前两类操作可能会出现 ...
- Liferay 6.2 改造系列之八:修改默认安装的Portlet项目War包
Liferay默认在Tomcat.Jetty等服务器情况下,自动安装marketplace-portlet-6.2.0.1.war包,实现应用商店的自动部署,一般不需要应用商店,故删除以下包即可: / ...
- windows安装python
1:首先去python网站下载安装包:https://www.python.org/downloads/,注意自己的系统版本 2:在自己指定目录安装即可: 3:将python路径加入PATH环境变量: ...