4591: [Shoi2015]超能粒子炮·改

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 95  Solved: 33
[Submit][Status][Discuss]

Description

曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加
强大的粒子流的神秘装置。超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升。它有三个参数n,k。它会
向编号为0到k的位置发射威力为C(n,k) mod 2333的粒子流。现在SHTSC给出了他的超能粒子炮·改的参数,让你求
其发射的粒子流的威力之和模2333。

Input

第一行一个整数t。表示数据组数。
之后t行,每行二个整数n,k。含义如题面描述。
k<=n<=10^18,t<=10^5

Output

t行每行一个整数,表示其粒子流的威力之和模2333的值。

Sample Input

1
5 5

Sample Output

32

HINT

Source

By 佚名上传

Solution

Lucas定理算是裸题?

大概就是预处理出组合数和前缀和,然后Lucas搞搞...

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
long long read()
{
long long x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define mod 2333
#define maxn 2500
int T;long long N,K;
int C[maxn][maxn],Sum[maxn][maxn];
void GetC(int n)
{
C[][]=;
for (int i=; i<=n; i++)
{
C[i][]=;
for (int j=; j<=i; j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
for (int i=; i<=n; i++)
{
Sum[i][]=C[i][];
for (int j=; j<=n; j++)
Sum[i][j]=(Sum[i][j-]+C[i][j])%mod;
}
}
int Lucas(long long n,long long m)
{
if (!m) return ;
return C[n%mod][m%mod]*Lucas(n/mod,m/mod)%mod;
}
int Calc(long long n,long long k)
{
if (k<) return ;
return ((Calc(n/mod,k/mod-)*Sum[n%mod][mod-])%mod+(Lucas(n/mod,k/mod)*Sum[n%mod][k%mod])%mod)%mod;
}
int main()
{
T=read();
GetC();
while (T--)
{
N=read(),K=read();
printf("%d\n",Calc(N,K));
}
return ;
}

【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理的更多相关文章

  1. bzoj 4591 超能粒子炮·改 - Lucas

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [BZOJ 4591] 超能粒子炮-改

    Link: 传送门 Solution: 记录一下推$\sum_{i=0}^k C_n^i$的过程: 其实就是将相同的$i/p$合起来算,这样每个里面都是一个可以预处理的子问题 接下来递归下去算即可 T ...

  3. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  4. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  5. BZOJ 4591 【SHOI2015】 超能粒子炮·改

    题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  8. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  9. loj#2038. 「SHOI2015」超能粒子炮・改

    题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<c ...

随机推荐

  1. Android项目,从web上取下汉字,中文部分乱码

    Android项目,从web上取下汉字,中文部分乱码. 常见问题,搜索一下,网上有很多办法解决.如果还没有试过这个办法,可以尝试一下. BufferedReader in = new Buffered ...

  2. UIScrollView增加刷新

    1. if (!self.scrollView) { CGRect frame = CGRectMake(0.0, 0.0, CGRectGetWidth(self.view.frame), CGRe ...

  3. [win]系统优化工具dism++

    系统优化工具, 确实能将c盘扩大个2-3g. 主要是删除日志 优化系统等功能. https://www.chuyu.me/

  4. java:POI导出excel

    POI是一个开源项目,专用于java平台上操作MS OFFICE,企业应用开发中可用它方便导出Excel. 下面是使用示例: 1.maven中先添加依赖项 <dependency> < ...

  5. 在线文档预览方案-office web apps

    最近在做项目时,要在手机端实现在线文档预览的功能.于是百度了一下实现方案,大致是将文档转换成pdf,然后在通过插件实现预览.这些方案没有具体实现代码,也没有在线预览的地址,再加上项目时间紧迫.只能考虑 ...

  6. Openwrt iptables分析

    这里将载有Openwrt的WR841N的路由表dump出来分析一下. 这个是dump出iptables的命令 root@OpenWrt:/etc/config# iptables-save 这里分为4 ...

  7. nios II--实验6——串口软件部分

    软件开发 首先,在硬件工程文件夹里面新建一个software的文件夹用于放置软件部分:打开toolsàNios II 11.0 Software Build Tools for Eclipse,需要进 ...

  8. 网站flash黑屏问题

    操作系统 专业回答 2012-04-12 20:44 看网站视频时,可以小屏看,不能最大化.最大化的时候,只有声音,图象卡住了不动. 解决办法: 1 打开视频 然后最大化 按键 击右健 设置 把加速硬 ...

  9. yii2权限控制rbac之详细操作步骤

    本篇的主题是 rbac权限控制的详细操作步骤,注意是操作步骤哦,关于配置与rbac的搭建,我们在博文 yii2搭建完美后台并实现rbac权限控制实例教程说的再清楚不过了. 但是,在很多人的反馈下,说是 ...

  10. C#中的interface

    接口(interface) 接口泛指实体把自己提供给外界的一种抽象化物(可以为另一实体),用以由内部操作分离出外部沟通方法,使其能被修改内部而不影响外界其他实体与其交互的方式. 接口实际上是一个约定: ...