【BZOJ-1787&1832】Meet紧急集合&聚会 倍增LCA
1787: [Ahoi2008]Meet 紧急集合
Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 2259 Solved: 1023
[Submit][Status][Discuss]
Description

Input

Output

Sample Input
1 2
2 3
2 4
4 5
5 6
4 5 6
6 3 1
2 4 4
6 6 6
Sample Output
2 5
4 1
6 0
HINT
Source
1832: [AHOI2008]聚会
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 1288 Solved: 505
[Submit][Status][Discuss]
Description
Y岛风景美丽宜人,气候温和,物产丰富。Y岛上有N个城市,有N-1条城市间的道路连接着它们。每一条道路都连接某两个城市。幸运的是,小可可通过这些道路可以走遍Y岛的所有城市。神奇的是,乘车经过每条道路所需要的费用都是一样的。小可可,小卡卡和小YY经常想聚会,每次聚会,他们都会选择一个城市,使得3个人到达这个城市的总费用最小。 由于他们计划中还会有很多次聚会,每次都选择一个地点是很烦人的事情,所以他们决定把这件事情交给你来完成。他们会提供给你地图以及若干次聚会前他们所处的位置,希望你为他们的每一次聚会选择一个合适的地点。
Input
第一行两个正整数,N和M。分别表示城市个数和聚会次数。后面有N-1行,每行用两个正整数A和B表示编号为A和编号为B的城市之间有一条路。城市的编号是从1到N的。再后面有M行,每行用三个正整数表示一次聚会的情况:小可可所在的城市编号,小卡卡所在的城市编号以及小YY所在的城市编号。
Output
一共有M行,每行两个数Pos和Cost,用一个空格隔开。表示第i次聚会的地点选择在编号为Pos的城市,总共的费用是经过Cost条道路所花费的费用。
Sample Input
1 2
2 3
2 4
4 5
5 6
4 5 6
6 3 1
2 4 4
6 6 6
Sample Output
2 5
4 1
6 0
数据范围:
100%的数据中,N<=500000,M<=500000。
40%的数据中N<=2000,M<=2000。
HINT
Source
Solution
水题,随便倍增一下求LCA就可以
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 500010
int n,m,deep[maxn],father[maxn][];
struct EdgeNode{int next,to;}edge[maxn<<];
int head[maxn],cnt;
void add(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void insert(int u,int v) {add(u,v); add(v,u);}
void DFS(int now,int last)
{
for (int i=; i<=; i++)
if (deep[now]>=(<<i)) father[now][i]=father[father[now][i-]][i-];
else break;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last)
{
father[edge[i].to][]=now;
deep[edge[i].to]=deep[now]+;
DFS(edge[i].to,now);
}
}
int LCA(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
int dd=deep[x]-deep[y];
for (int i=; i<=; i++)
if ((<<i)&dd) x=father[x][i];
for (int i=; i>=; i--)
if (father[x][i]!=father[y][i])
x=father[x][i],y=father[y][i];
if (x==y) return x; return father[x][];
}
int Dist(int u,int v)
{
int lca=LCA(u,v);
return deep[u]+deep[v]-(deep[lca]<<);
}
int ans,rt;
int main()
{
n=read(); m=read();
for (int u,v,i=; i<=n-; i++)
u=read(),v=read(),insert(u,v);
DFS(,);
for (int x,y,z,i=; i<=m; i++)
{
x=read(),y=read(),z=read();
int fxy=LCA(x,y),fyz=LCA(y,z),fxz=LCA(x,z);
rt=(fxy==fyz)? fxz : fxy==fxz? fyz : fxy;
ans=Dist(x,rt)+Dist(y,rt)+Dist(z,rt);
printf("%d %d\n",rt,ans);
}
return ;
}
在学校被***毒的不能自拔,感觉已经不想在班里待下去了
【BZOJ-1787&1832】Meet紧急集合&聚会 倍增LCA的更多相关文章
- bzoj 1787 [Ahoi2008]Meet 紧急集合(1832 [AHOI2008]聚会)
1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1841 Solved: 857[Submit][ ...
- BZOJ 1787: [Ahoi2008]Meet 紧急集合 LCA
1787: [Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 3 1 ...
- BZOJ 1787: [Ahoi2008]Meet 紧急集合( 树链剖分 )
这道题用 LCA 就可以水过去 , 但是我太弱了 QAQ 倍增写LCA总是写残...于是就写了树链剖分... 其实也不难写 , 线段树也不用用到 , 自己YY一下然后搞一搞就过了...速度还挺快的好像 ...
- bzoj 1787: [Ahoi2008]Meet 紧急集合
1787: [Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 3 1 ...
- BZOJ 1787: [Ahoi2008]Meet 紧急集合(lca+贪心)
[Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 3 1 2 4 4 ...
- bzoj 1787 && bzoj 1832: [Ahoi2008]Meet 紧急集合(倍增LCA)算法竞赛进阶指南
题目描述 原题连接 Y岛风景美丽宜人,气候温和,物产丰富. Y岛上有N个城市(编号\(1,2,-,N\)),有\(N-1\)条城市间的道路连接着它们. 每一条道路都连接某两个城市. 幸运的是,小可可通 ...
- bzoj 1787: [Ahoi2008]Meet 紧急集合【树链剖分lca】
对于三个点求最小路径长度和,答案肯定在某两个点的lca上,因为如果把集合点定在公共lca上,一定有两个点汇合后再一起上到lca,这样显然不如让剩下的那个点下来 这个lca可能是深度最深的--但是我懒得 ...
- BZOJ——1787: [Ahoi2008]Meet 紧急集合
http://www.lydsy.com/JudgeOnline/problem.php?id=1787 题目描述 输入 输出 样例输入 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 ...
- 1787: [Ahoi2008]Meet 紧急集合
1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1482 Solved: 652[Submit][ ...
随机推荐
- mysql中判断记录是否存在方法比较
我这里总结了判断记录是否存在的常用方法: sql语句:select count(*) from tablename; 然后读取count(*)的值判断记录是否存在.对于这种方法性能上有些浪费,我们只是 ...
- Web服务器父与子 Apache和Tomcat区别
http://developer.51cto.com/art/201007/210894.htm 熟悉三国的朋友都知道曹操,曹操有二十五个儿子,其中最得曹操宠爱的是曹丕.曹植.曹彰三个,曹丕性格阴冷, ...
- Linux execve函数簇用法
exec函数簇实现的功能都是用一个新程序替换原来的程序,替换的内容包括堆栈段,代码段,进程控制器PCD,但是原进程的PID保持不变 int execl(const char *path, const ...
- 数据库Mark.2
select count(*) as count,DATE_SUB('2016-10-04',INTERVAL regDay DAY) from result_1005 group by DATE_S ...
- SHGetFileInfo函数详解
SHGetFileInfo函数: WINSHELLAPI DWORD WINAPI SHGetFileInfo( LPCTSTR pszPath, DWORD dwFileAttributes, SH ...
- 文本比较算法Ⅱ——Needleman/Wunsch算法
在"文本比较算法Ⅰ--LD算法"中介绍了基于编辑距离的文本比较算法--LD算法. 本文介绍基于最长公共子串的文本比较算法--Needleman/Wunsch算法. 还是以实例说明: ...
- 文件夹管理工具(MVC+zTree+layer)(附源码)
写在前 之前写了一篇关于 文件夹与文件的操作的文章 操作文件方法简单总结(File,Directory,StreamReader,StreamWrite ) 把常用的对于文件与文件夹的操作总结了一 ...
- Windows下搭建PHP环境:Apache+PHP+MySQL
本文简单记录一下Windows下搭建PHP环境的过程,一些细节可以参照本文参考资料,此文不再赘述 准备工作: Windows下手工搭建PHP环境需要先下载相应的软件,需要注意的是Apache与PHP的 ...
- .net异步编程
现在电脑大部分都是多核心,在处理多线程方便有很大优势,异步调用方法的时候可以立即返回执行其他程序,进行异步编程会让程序运行效率更高. 我也是刚刚关注异步编程方面知识,也有很多不是很理解,所以想向大神请 ...
- 学堂在线 UWP 首版
好久没有写博客了,主要是最近在写一个小小的App.<( ̄︶ ̄)> 不知道看各位有木有爱看慕课的,作为一名资深的大三学渣的我有看慕课的习惯.一直在看学堂在线的慕课,感觉质量确实还可以,但是遗 ...