Redundant Paths

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular
path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only
travel on Official Paths when they move from one field to another. 



Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate
routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 



There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R 



Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample: 



One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 

Every pair of fields is, in fact, connected by two routes. 



It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source


题意:

给定一个无向连通图,判断至少加多少的边,才能使任意两点之间至少有两条的独立的路(没有公共的边,但可以经过同一个中间的顶点)。

思路:
在同一个双连通分量里的所有的点可以看做一个点,收缩后,新图是一棵树,树的边边是原图的桥。现在问题转化为“在树中至少添加多少条边能使图变成边双连通图”,即添加的边的个数=(树中度为一的节点数目+1)/2;

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL long long using namespace std; const int MaxN = 10100; const int MaxM = 5100;
// 建图
typedef struct node
{
int v;
int next;
}Line; Line Li[MaxN*2]; int Belong[MaxM];//判断所属的双连通的集合
//回到最优先遍历度最小的节点和记录点DFS的顺序
int low[MaxM],dfn[MaxM]; int Head[MaxM],top; int pre[MaxM]; //并查集 int vis[MaxM],Num;//标记点的状态 int Bridge[MaxM][2],NumB;//记录图中的桥 void AddEdge(int u,int v)// 建边
{
Li[top].v=v; Li[top].next=Head[u];
Head[u]=top++; Li[top].v=u; Li[top].next=Head[v];
Head[v]=top++;
} int Find(int x)// 路径压缩
{
return pre[x]==-1?x:pre[x]=Find(pre[x]);
} void Union(int x,int y)
{
int Fx = Find(x); int Fy = Find(y); if(Fx!=Fy)
{
pre[Fx] = Fy;
}
} void dfs(int u,int father)
{
low[u]=dfn[u]=Num++; vis[u]=1;//表示已经遍历但是没有遍历完子女 for(int i=Head[u];i!=-1;i=Li[i].next)
{
int j=Li[i].v; if(vis[j]==1&&j!=father)// 回到的祖先
{
low[u]=min(low[u],dfn[j]);
}
if(vis[j]==0)
{
dfs(j,u); low[u]=min(low[j],low[u]); if(low[j]<=dfn[u])//说明是双连分量中的边
{
Union(u,j);
}
if(low[j]>dfn[u])//桥
{
Bridge[NumB][0]=j;
Bridge[NumB++][1]=u;
}
}
}
vis[u]=2;
} int main()
{
int n,m; while(~scanf("%d %d",&n,&m))
{ top=0; int u,v; memset(Head,-1,sizeof(Head)); memset(pre,-1,sizeof(pre));
for(int i=1;i<=m;i++)
{
scanf("%d %d",&u,&v); AddEdge(u,v);
} memset(vis,0,sizeof(vis)); memset(Belong ,-1 ,sizeof(Belong)); Num = 0 ; NumB=0 ; dfs(1,0); Num = 0;
for(int i=1;i<=n;i++)
{
int k=Find(i);//给双连通分量集合编号 if(Belong[k]==-1)
{
Belong[k]=++Num;
}
Belong[i]=Belong[k];
}
memset(vis,0,sizeof(vis)); for(int k=0;k<NumB;k++)
{
int i=Bridge[k][0]; int j=Bridge[k][1]; vis[Belong[i]]++; vis[Belong[j]]++;
} int ans = 0; for(int i=1;i<=n;i++)
{
if(vis[i]==1)
{
ans++;
}
}
printf("%d\n",(ans+1)/2);
}
return 0;
}

Redundant Paths-POJ3177(并查集+双连通分量)的更多相关文章

  1. POJ3177:Redundant Paths(并查集+桥)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19316   Accepted: 8003 ...

  2. Redundant Paths POJ - 3177(边—双连通分量)

    题意: 在图中加边 看最少能通过加多少条边把 图变成边—双连通分量 解析: 先做一次dfs,不同的连通分量的low是不同的  注意重边 缩点 统计度为1的点  那么需要加的边为(ret+1)/2 #i ...

  3. poj-3177(并查集+双联通分量+Tarjan算法)

    题目链接:传送门 思路: 题目要将使每一对草场之间都有至少两条相互分离的路径,所以转化为(一个有桥的连通图至少加几条边才能变为双联通图?) 先求出所有的桥的个数,同时将不同区块收缩成一个点(利用并查集 ...

  4. HDU - 5438 Ponds(拓扑排序删点+并查集判断连通分量)

    题目: 给出一个无向图,将图中度数小于等于1的点删掉,并删掉与他相连的点,直到不能在删为止,然后判断图中的各个连通分量,如果这个连通分量里边的点的个数是奇数,就把这些点的权值求和. 思路: 先用拓扑排 ...

  5. [HDU1232] 畅通工程 (并查集 or 连通分量)

    Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M:随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的 ...

  6. poj3177重修道路——边双连通分量缩点

    题目:http://poj.org/problem?id=3177 找桥,缩点,总之都是板子: 对于每个叶子,互相连一条边即可:若最后剩下一个,则去和根节点连边: 所以叶子节点数+1再/2即答案. 代 ...

  7. PAT Advanced A1021 Deepest Root (25) [图的遍历,DFS,计算连通分量的个数,BFS,并查集]

    题目 A graph which is connected and acyclic can be considered a tree. The height of the tree depends o ...

  8. POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8807   Accepted ...

  9. 并查集(UVA 1106)

    POINT: 把每个元素看成顶点,则一个简单化合物就是一条无向边,若存在环(即k对组合中有k种元素),则危险,不应该装箱,反之,装箱: 用一个并查集维护连通分量集合,每次得到一种化合物(x, y)时检 ...

随机推荐

  1. backbone学习笔记一

    backbone是一个MVC单页面框架,针对传统的WEB开发B/S架构的缺点,即通过表现层的浏览器,功能层的WEB服务器,数据层的数据库服务器构架,而操作渲染过程太过复杂.

  2. asp.net 修改/删除站内目录操作后会导致Session丢失

    http://www.jb51.net/article/21770.htm http://blog.chinaunix.net/uid-7425507-id-134216.html 在Web项目中使用 ...

  3. 提示此windows副本不是正版的win7系统7601解决方法

      windows不是正版的提示一旦出现,那就表示我们的windows需要激活.在激活之前,我们的桌面主题就会无法正常更改,哪怕换了 壁纸或者主题我们的电脑显示屏依然会经常黑屏.虽然并不会影响我们使用 ...

  4. 杭电ACM 1201

    #include <stdio.h> int func(int year){ if ( year % 400 == 0 || (year % 4 == 0 &&year % ...

  5. app与后台通信协议

    通用的语言有很多种,例如英语和中文,在网络的通讯中,通用的协议有很多,其中http是被最广泛使用的.如果是私有的协议,那就只能自己设计了. 用http是最方便的,如果是私有协议,包含协议的封装和拆解, ...

  6. SaveData Functions

    Here are some save function for some situations: Yes/No /// <summary> ///保存数据到WCF /// </sum ...

  7. asp

    <%@LANGUAGE="%> <!--#include file="include.asp"--> <meta http-equiv=&q ...

  8. wpf 属性变更通知接口 INotifyPropertyChanged

    在wpf中将控件绑定到对象的属性时, 当对象的属性发生改变时必须通知控件作出相应的改变, 所以此对象需要实现 INotifyPropertyChanged 接口 例: //实现属性变更通知接口 INo ...

  9. Json与类对象转换

    Json在js,jquery中可以直接使用,比如下串: { "from":"en" ,"to":"zh" ," ...

  10. 从清月高中物理动学课件制作工具说【FarseerPhysics引擎之WheelJoint】及【PropetryGrid之动态下拉列表】

    最近在写一个简单的小工具,可以用来制作一些简单的运动学课件,这个工具主要是把物理引擎的设置可视化,主要包括利用纹理图片直接创建并设置物体.关节等方面.之前开发时主要使用BOX2D引擎和BOX2D.XN ...