Redundant Paths

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular
path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only
travel on Official Paths when they move from one field to another. 



Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate
routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 



There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R 



Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample: 



One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 

Every pair of fields is, in fact, connected by two routes. 



It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source


题意:

给定一个无向连通图,判断至少加多少的边,才能使任意两点之间至少有两条的独立的路(没有公共的边,但可以经过同一个中间的顶点)。

思路:
在同一个双连通分量里的所有的点可以看做一个点,收缩后,新图是一棵树,树的边边是原图的桥。现在问题转化为“在树中至少添加多少条边能使图变成边双连通图”,即添加的边的个数=(树中度为一的节点数目+1)/2;

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL long long using namespace std; const int MaxN = 10100; const int MaxM = 5100;
// 建图
typedef struct node
{
int v;
int next;
}Line; Line Li[MaxN*2]; int Belong[MaxM];//判断所属的双连通的集合
//回到最优先遍历度最小的节点和记录点DFS的顺序
int low[MaxM],dfn[MaxM]; int Head[MaxM],top; int pre[MaxM]; //并查集 int vis[MaxM],Num;//标记点的状态 int Bridge[MaxM][2],NumB;//记录图中的桥 void AddEdge(int u,int v)// 建边
{
Li[top].v=v; Li[top].next=Head[u];
Head[u]=top++; Li[top].v=u; Li[top].next=Head[v];
Head[v]=top++;
} int Find(int x)// 路径压缩
{
return pre[x]==-1?x:pre[x]=Find(pre[x]);
} void Union(int x,int y)
{
int Fx = Find(x); int Fy = Find(y); if(Fx!=Fy)
{
pre[Fx] = Fy;
}
} void dfs(int u,int father)
{
low[u]=dfn[u]=Num++; vis[u]=1;//表示已经遍历但是没有遍历完子女 for(int i=Head[u];i!=-1;i=Li[i].next)
{
int j=Li[i].v; if(vis[j]==1&&j!=father)// 回到的祖先
{
low[u]=min(low[u],dfn[j]);
}
if(vis[j]==0)
{
dfs(j,u); low[u]=min(low[j],low[u]); if(low[j]<=dfn[u])//说明是双连分量中的边
{
Union(u,j);
}
if(low[j]>dfn[u])//桥
{
Bridge[NumB][0]=j;
Bridge[NumB++][1]=u;
}
}
}
vis[u]=2;
} int main()
{
int n,m; while(~scanf("%d %d",&n,&m))
{ top=0; int u,v; memset(Head,-1,sizeof(Head)); memset(pre,-1,sizeof(pre));
for(int i=1;i<=m;i++)
{
scanf("%d %d",&u,&v); AddEdge(u,v);
} memset(vis,0,sizeof(vis)); memset(Belong ,-1 ,sizeof(Belong)); Num = 0 ; NumB=0 ; dfs(1,0); Num = 0;
for(int i=1;i<=n;i++)
{
int k=Find(i);//给双连通分量集合编号 if(Belong[k]==-1)
{
Belong[k]=++Num;
}
Belong[i]=Belong[k];
}
memset(vis,0,sizeof(vis)); for(int k=0;k<NumB;k++)
{
int i=Bridge[k][0]; int j=Bridge[k][1]; vis[Belong[i]]++; vis[Belong[j]]++;
} int ans = 0; for(int i=1;i<=n;i++)
{
if(vis[i]==1)
{
ans++;
}
}
printf("%d\n",(ans+1)/2);
}
return 0;
}

Redundant Paths-POJ3177(并查集+双连通分量)的更多相关文章

  1. POJ3177:Redundant Paths(并查集+桥)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19316   Accepted: 8003 ...

  2. Redundant Paths POJ - 3177(边—双连通分量)

    题意: 在图中加边 看最少能通过加多少条边把 图变成边—双连通分量 解析: 先做一次dfs,不同的连通分量的low是不同的  注意重边 缩点 统计度为1的点  那么需要加的边为(ret+1)/2 #i ...

  3. poj-3177(并查集+双联通分量+Tarjan算法)

    题目链接:传送门 思路: 题目要将使每一对草场之间都有至少两条相互分离的路径,所以转化为(一个有桥的连通图至少加几条边才能变为双联通图?) 先求出所有的桥的个数,同时将不同区块收缩成一个点(利用并查集 ...

  4. HDU - 5438 Ponds(拓扑排序删点+并查集判断连通分量)

    题目: 给出一个无向图,将图中度数小于等于1的点删掉,并删掉与他相连的点,直到不能在删为止,然后判断图中的各个连通分量,如果这个连通分量里边的点的个数是奇数,就把这些点的权值求和. 思路: 先用拓扑排 ...

  5. [HDU1232] 畅通工程 (并查集 or 连通分量)

    Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M:随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的 ...

  6. poj3177重修道路——边双连通分量缩点

    题目:http://poj.org/problem?id=3177 找桥,缩点,总之都是板子: 对于每个叶子,互相连一条边即可:若最后剩下一个,则去和根节点连边: 所以叶子节点数+1再/2即答案. 代 ...

  7. PAT Advanced A1021 Deepest Root (25) [图的遍历,DFS,计算连通分量的个数,BFS,并查集]

    题目 A graph which is connected and acyclic can be considered a tree. The height of the tree depends o ...

  8. POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8807   Accepted ...

  9. 并查集(UVA 1106)

    POINT: 把每个元素看成顶点,则一个简单化合物就是一条无向边,若存在环(即k对组合中有k种元素),则危险,不应该装箱,反之,装箱: 用一个并查集维护连通分量集合,每次得到一种化合物(x, y)时检 ...

随机推荐

  1. 关于ASPCMS标签调用的一些总结

    菜单的应用 <ul class="nav navbar-nav"> {aspcms:navlist} {}<!--判断是否有下级目录--> <li c ...

  2. const 指针的三种使用方式

    ///////////////////////const 指针的三种状态///////////////////// 注意:const 的前后顺序 const 在类型之前 ---可以修改指针包含的地址, ...

  3. js sort() 排序的问题

    默认并非按照大小排序,而是根据Assic来排序的,但接受一个排序函数.所以正确的使用姿势应该是这样的: var arr = [0,1,5,10,15]; function sequence(a,b){ ...

  4. Android课程---视图组件的总结

  5. 【iCore3 双核心板】例程二十九:SD_IAP_FPGA实验——更新升级FPGA

    实验指导书及代码包下载: http://pan.baidu.com/s/1o7h158m iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  6. 【iCore3 双核心板_ uC/OS-III】例程二:任务的建立与删除

    实验指导书及代码包下载: http://pan.baidu.com/s/1bD7ulK iCore3 购买链接: https://item.taobao.com/item.htm?id=5242294 ...

  7. Python之编写函数

    Python之编写函数 在Python中,定义一个函数要使用 def 语句,依次写出函数名.括号.括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用 return 语句返回. 我们以自定 ...

  8. C++ 一个统计文件夹下所有代码文件行数的小工具

    // CodeLines.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <Commdlg.h> #inclu ...

  9. 连接mysql问题 mysqlnd cannot connect to MySQL 4.1+ using old authentication

    第一篇:PHP5.3开始使用MySqlND作为默认的MySql访问驱动,而且从这个版本开始将不再支持使用旧的用户接口链接Mysql了,你可能会看到类似的提示: #2000 - mysqlnd cann ...

  10. PowerDesigner连接mysql逆向生成pdm

    常用的建模工具有:PowerDesigner和ERWin,后者已快被淘汰,但前者依然活跃.相信大家都遇到过项目组已经运营很很久,但是竟然连一个ER图都没有,今天就讲解一下PowerDesigner连接 ...