【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm)
本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法。分享给大家供大家参考之用。具体如下:
首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。我们先从简单的例子入手:求abmodc
算法1.直接设计这个算法:
int ans = ;
for(int i = ;i<=b;i++)
{
ans = ans * a;
}
ans = ans % c;
缺点:这个算法存在着明显的问题,如果a和b过大,很容易就会溢出。
我们先来看看第一个改进方案:在讲这个方案之前,要先看这样一个公式:ab mod c = (a mod c)c mod c
于是不用思考的进行了改进:
算法2.改进算法:
int ans = ;
a = a % c; //加上这一句
for(int i = ;i<=b;i++)
{
ans = ans * a;
}
ans = ans % c;
读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。
算法3.进一步改进算法:
int ans = ;
a = a % c; //加上这一句
for(int i = ;i<=b;i++)
{
ans = (ans * a) % c;//这里再取了一次余
}
ans = ans % c;
这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。
算法4.快速幂算法:
快速幂算法依赖于以下明显的公式:
int PowerMod(int a, int b, int c)
{
int ans = ;
a = a % c;
while(b>) {
if(b % = = )
ans = (ans * a) % c;
b = b/;
a = (a * a) % c;
}
return ans;
}
本算法的时间复杂度为O(logb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。
相信本文所述对大家算法设计的学习有一定的借鉴价值。
【转】C语言快速幂取模算法小结的更多相关文章
- Raising Modulo Numbers_快速幂取模算法
Description People are different. Some secretly read magazines full of interesting girls' pictures, ...
- 《Java语言实现快速幂取模》
快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 ...
- Powmod快速幂取模
快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模
小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) To ...
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- 快速幂取模(POJ 1995)
http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
随机推荐
- DP~青蛙过河(hrbust1186)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAxoAAAKlCAYAAABMq5pGAAAgAElEQVR4nOzdf4xl53nY9/mrQP8r+k
- 修复 VirtualBox 下 Ubuntu 14.10 屏幕分辨率问题
在 Windows 7 下使用 VirtualBox 安装了一个 Ubuntu 14.10 后,碰到了一个 640×480 屏幕分辨率的问题. 在 ‘Display Settings' 设置界面的 ‘ ...
- Xcode 6制作动态及静态Framework和各种坑
Xcode 6制作动态及静态Framework http://www.cocoachina.com/ios/20141126/10322.html 有没有写SDK或者要将一些常用的工具类做成Frame ...
- jquery版时钟(css3实现)
做时钟的主要原因是因为喜欢,觉得它好看(本人对特效有点爱不释手……).做的时候感觉工程量会有点大,做着做着发现实现起来其实并不难,只要理清思绪,其实还蛮简单的(我制作东西喜欢整体方向制定好,然后边做边 ...
- OpenCV成长之路(9):特征点检测与图像匹配
特征点又称兴趣点.关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像.进行图像配准.进行3D重建等.本文主要介绍OpenCV中几种定位与表示关键点的函数. 一.Harris ...
- 本科小白学ROS 和 SLAM(一):杂谈
本人最近才迷恋上ROS(Robot Operating System),准确的说应该是6月中旬,具体的记不清了(可能是年纪大了,容易健忘).对于一个电子DIY的狂热爱好者来说,我在校的梦想就是做一个属 ...
- poj 2524 (并查集)
http://poj.org/problem?id=2524 题意:在一所学校里面的人,都有宗教信仰,不过他们的宗教信仰有可能相同有可能不同,但你又不能直接去问他们,但你可以问他们和谁是同一个宗教.通 ...
- JS中的timestamp
http://blog.163.com/lijy_980720@126/blog/static/75574626201261783343834/
- iOS 在UITableViewCell中加入自定义view时view的frame设定注意
由于需要重用同一个布局,于是在cellForRowAtIndexPath中把自定义view加在了cell上,我是这样设定view的frame的 var screenFrame = UIScreen.m ...
- ffmpeg-20160714-git-bin.7z
ESC 退出 0 进度条开关 1 屏幕原始大小 2 屏幕1/2大小 3 屏幕1/3大小 4 屏幕1/4大小 S 下一帧 [ -2秒 ] +2秒 ; -1秒 ' +1秒 下一个帧 -> -5秒 f ...