题目:这里

题意:

感觉并不能表达清楚题意,所以

Problem Description
In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.

You find a partial tree on the way home. This tree has n nodes but lacks of n−1 edges. You want to complete this tree by adding n−1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn−2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What's the maximum coolness of the completed tree?

 
Input
The first line contains an integer T indicating the total number of test cases.
Each test case starts with an integer n in one line,
then one line with n−1 integers f(1),f(2),…,f(n−1).

1≤T≤2015
2≤n≤2015
0≤f(i)≤10000
There are at most 10 test cases with n>100.

 
Output
For each test case, please output the maximum coolness of the completed tree in one line.
 
Sample Input
2
3
2 1
4
5 1 4
 
Sample Output
5
19
 
首先,这个最终答案是与点的度有关,由于是个树,可以知道最后所有点的度数和是n*2-2,还有,每个点至少得有一个度,所以最终答案得先加上f[1]*n,然后现在
还剩下n-2个度,需要在n个点里分配,使得分配之后的权值最大,但是这个分配由于是有关联的,一个点的度数加了1之后必须得有另一个点的度数也加1,所以我们的
分配方案还得满足这个条件,不能随意分配,但是通过随意取几个n值构造一下树发现,n-2个度任意分给n个点的方案能够满足构造出一棵树,而且这个构造还挺有
规律,有递推性,所以大胆认为可以任意分配,好,现在n-2个度分配给n个点,每次可以分配1到n-1个度,问怎么分配值f()最大,这不就是一个背包么,还是一个完全
背包。再注意一下这是在每个点已经有了一个度的前提下,所以得减去f[1]。
 
 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; #define inf 0x3f3f3f3f
const int M = 1e4 + ;
int dp[M],a[M]; int max(int x,int y){return x>y?x:y;} int main()
{
int t,n;
scanf("%d",&t);
while (t--){
scanf("%d",&n);
for (int i= ; i<n ; i++) {
scanf("%d",&a[i]);
if (i!=) a[i]-=a[];
}
//int pa=n*2-2;
for (int i= ; i<=n ; i++) dp[i]=-inf;
dp[]=;//dp[1]=a[1];
for (int i= ; i<n ; i++) {
for (int j= ; j+i-<=n- ; j++)
dp[i+j-] = max(dp[i+j-],dp[j]+a[i]);
}
printf("%d\n",dp[n-]+n*a[]);
}
return ;
}
 

hdu 5534 (完全背包) Partial Tree的更多相关文章

  1. HDU 5534 完全背包

    Partial Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  2. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. H - Partial Tree HDU - 5534 (背包)

    题目链接: H - Partial Tree  HDU - 5534 题目大意:首先是T组测试样例,然后n个点,然后给你度数分别为(1~n-1)对应的不同的权值,然后问你在这些点形成树的前提下的所能形 ...

  4. HDU 5534 Partial Tree 完全背包

    一棵树一共有2*(n-1)度,现在的任务就是将这些度分配到n个节点,使这n个节点的权值和最大. 思路:因为这是一棵树,所以每个节点的度数都是大于1的,所以事先给每个节点分配一度,答案 ans=f[1] ...

  5. HDU - 5534 Partial Tree(每种都装的完全背包)

    Partial Tree In mathematics, and more specifically in graph theory, a tree is an undirected graph in ...

  6. HDU 5534/ 2015长春区域H.Partial Tree DP

    Partial Tree Problem Description In mathematics, and more specifically in graph theory, a tree is an ...

  7. 2015ACM/ICPC亚洲区长春站 H hdu 5534 Partial Tree

    Partial Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  8. Partial Tree

    Partial Tree 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 完全背包 做这题前去学习了下完全背包,觉得这个优化简直神技!(以前都是 ...

  9. Partial Tree(DP)

    Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...

随机推荐

  1. html&css基础知识

    ***定义字符编码:一般为UTF-8(年国际通用编码) ***响应式界面:可以智能地根据用户行为以及使用的设备环境(系统平台.屏幕尺寸.屏幕定向等)进行相对应的布局,可以兼容多个终端. 在websto ...

  2. FIS

    学习官网 http://fis.baidu.com/docs/beginning/getting-started.html   1. fis release: 编译并发布     fis releas ...

  3. 常用linux维护命令

    cat /etc/issue  查看linux版本信息

  4. Servlet--表单、超链接、转发、重定向4种情况的路径

    Servlet中相对路径总结 假设web工程使用如下目录结构: 在介绍相对路径和绝对路径前需要先了解几个概念: 服务器的站点根目录:以tomcat服务器为例,tomcat服务器站点根目录就是apach ...

  5. JS学习知我见(常用建站代码)

    <!doctype html><html><head><meta charset="utf-8"><meta name=&qu ...

  6. android avd sdk root

    网上的方式都失败了... 网上的方式据说是 用于 2.0 左右版本的. 而我们现在主流都用的是  4.0 以上的. 这个http://quantoubao.blog.163.com/blog/stat ...

  7. Python-类变量,成员变量,静态变量,类方法,静态方法,实例方法,普通函数

    #coding:utf-8class class_name(object): class_var = 'I am a class variable' #类变量 def __init__(self): ...

  8. 多媒体(1):MCI接口编程

    目录 多媒体(1):MCI接口编程 多媒体(2):WAVE文件格式分析 多媒体(3):基于WindowsAPI的视频捕捉卡操作 多媒体(4):JPEG图像压缩编码 多媒体(1):MCI接口编程

  9. JavaScript如何检查网站是可以访问

    <html><head><title>JavaScript如何检查网站是可以访问</title> <script> //JavaScript ...

  10. 转自pnljs 委托(Func<int,bool>)

    随笔- 147 文章- 0 评论- 16 Func的介绍   经常看到  Func<int, bool>...这样的写法,看到这样的就没有心思看下去了.我们学技术还是需要静下心来. 对Fu ...