bzoj1091: [SCOI2003]切割多边形
Description
有一个凸p边形(p<=8),我们希望通过切割得到它。一开始的时候,你有一个n*m的矩形,即它的四角的坐标分
别为(0,0), (0,m), (n,0), (n,m)。每次你可以选择一条直线把当前图形切割成两部分,保留其中一个部分(另一
部分扔掉)切割线的长度为此直线在多边形内部的部分的长度。求出最短的切割线总长度。下面是一个例子。我们
需要得到中间的多边形。

分别沿着直线1,2,3,4进行切割即可,得到中间的四边形。
Input
第一行有两个整数n, m(0 < n,m < 500),第二行为一个整数p(3<=p<=8)。以下p行每行为两个整数x, y(0 < x
< n, 0 < y < m),为按顺时针给出的各顶点坐标。数据保证多边形的是凸的,无三点共线。输入数据无错误。
Output
仅一行,为最短切割线的总长度,四舍五入到小数点后3位。允许有0.001的误差。
#include<cstdio>
#include<cmath>
#include<algorithm>
int n,id[],lp=;
double v1,v2,ans=1e10;
struct pos{
double x,y;
void init(){scanf("%lf%lf",&x,&y);}
pos operator+(pos a){return (pos){x+a.x,y+a.y};}
pos operator-(pos a){return (pos){x-a.x,y-a.y};}
pos operator*(double a){return (pos){x*a,y*a};}
double operator*(pos a){return x*a.y-y*a.x;}
double dot(pos a){return x*a.x+y*a.y;}
double abs(){return sqrt(x*x+y*y);}
}ps[];
double mn,mx;
struct line{
pos a,b;
void chk(line w){
double c=w.b*b;
if(c==)return;
c=(a*w.b+w.b*w.a)/c;
if(c>0.5)c<mx&&(mx=c);
else c>mn&&(mn=c);
}
}ls[],l0[];
int main(){
scanf("%lf%lf%d",&v1,&v2,&n);
for(int i=;i<=n;++i)ps[i].init(),id[i]=i;
ps[n+]=ps[];
pos p1=(pos){,},p2=(pos){v1,},p3=(pos){v1,v2},p4=(pos){,v2};
ls[lp++]=(line){p1,p2-p1};
ls[lp++]=(line){p2,p3-p2};
ls[lp++]=(line){p3,p4-p3};
ls[lp++]=(line){p4,p1-p4};
for(int i=;i<=n;++i)l0[i]=(line){ps[i],ps[i+]-ps[i]};
do{
lp=;
double s=;
for(int i=;i<=n;++i){
int w=id[i];
mn=-1e10,mx=1e10;
for(int j=;j<lp;++j)l0[w].chk(ls[j]);
ls[lp++]=l0[w];
s+=(mx-mn)*l0[w].b.abs();
}
if(s<ans)ans=s;
}while(std::next_permutation(id+,id+n+));
printf("%.3f",ans);
return ;
}
bzoj1091: [SCOI2003]切割多边形的更多相关文章
- 【题解】切割多边形 [SCOI2003] [P4529] [Bzoj1091]
[题解]切割多边形 [SCOI2003] [P4529] [Bzoj1091] 传送门:切割多边形 \(\text{[SCOI2003] [P4529]}\) \(\text{[Bzoj1091]}\ ...
- BZOJ 1091([SCOI2003]分割多边形-分割直线)
1091: [SCOI2003]分割多边形 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 223 Solved: 82 [Submit][id=10 ...
- poj 2540 Hotter Colder 切割多边形
/* poj 2540 Hotter Colder 切割多边形 用两点的中垂线切割多边形,根据冷热来判断要哪一半 然后输出面积 */ #include <stdio.h> #include ...
- 【BZOJ】【1091】【SCOI2003】切割多边形
计算几何+枚举 我比较傻逼……一开始想了个贪心,就是这样:
- BZOJ 1091--切割多边形(几何&枚举)
1091: [SCOI2003]切割多边形 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 356 Solved: 157[Submit][Status ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 任意多边形切割/裁剪(附C#代码实现)
本实现主要参考了发表于2003年<软件学报>的<一个有效的多边形裁剪算法>(刘勇奎,高云,黄有群)这篇论文,所使用的理论与算法大都基于本文,对论文中部分阐述进行了详细解释,并提 ...
- poj3335 半交平面,多边形内核
Rotating Scoreboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5300 Accepted: 21 ...
- WebGIS裁剪算法-线裁剪多边形
在gis系统中 经常会用到一些裁剪的方法,首先推荐一个非常好用的空间分析JavaScript库--Turf.js,不仅功能强大.使用简单,同时处理速度也很快. Turf.js中提供了一中多边形的裁剪方 ...
随机推荐
- 【转】slice,substr和substring的区别
首先,他们都接收两个参数,slice和substring接收的是起始位置和结束位置(不包括结束位置),而substr接收的则是起始位置和所要返回的字符串长度.直接看下面例子: var test = ' ...
- u-boot链接脚本分析
eclipse 64位下载地址:http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release ...
- Protobuf C#教程 ThriftC#教程大合辑
android与PC,C#与Java 利用protobuf 进行无障碍通讯[Socket] http://www.cnblogs.com/TerryBlog/archive/2011/04/23/20 ...
- Linux系统下远程文件拷贝scp命令
在Linux系统下,不同机器上实现文件拷贝 一.将本地文件拷贝到远程机器: scp /home/administrator/news.txt root@192.168.6.129:/etc/squid ...
- 项目中创建单元测试—VS2012
我们在每个项目的开发过程中,开发完一个功能,自己首先需要测试一下,VS提供了很方便的测试功能,可以很容易的创建单元测试,但是在VS2012中类名上点击右键没有『创建单元测试』这个菜单,需要先进行设置一 ...
- Android 如何通过代码模拟按钮点击 延时函数
View.performClick(); 比如: private Button mButton01; mButton01 = (Button)findViewById(R.id.myButt ...
- bash 取文件特定行
比如,想要取某文件10-20行 可以用sed sed -n '10,20p' XXX.txt 非常方便!
- c#读取XML
http://www.cnblogs.com/a1656344531/archive/2012/11/28/2792863.html ================================= ...
- ulua 路径小记 以及 lua require 机制整理
ulua 路径小记 在学习ulua时,require模块的根路径可以为项目的Lua文件夹或者ToLua文件夹(Editor下),但是在package.path和package.cpath中并没有看到当 ...
- ionic slidebox 嵌套问题
ionic slidebox 嵌套 会有一个 冒泡 事件 , 即使是 阻止了 父级冒泡也不管用 , 最终 用 滑动 事件on-drag="drag()" 去阻止 了父级的 滑 ...