bzoj1091: [SCOI2003]切割多边形
Description
有一个凸p边形(p<=8),我们希望通过切割得到它。一开始的时候,你有一个n*m的矩形,即它的四角的坐标分
别为(0,0), (0,m), (n,0), (n,m)。每次你可以选择一条直线把当前图形切割成两部分,保留其中一个部分(另一
部分扔掉)切割线的长度为此直线在多边形内部的部分的长度。求出最短的切割线总长度。下面是一个例子。我们
需要得到中间的多边形。

分别沿着直线1,2,3,4进行切割即可,得到中间的四边形。
Input
第一行有两个整数n, m(0 < n,m < 500),第二行为一个整数p(3<=p<=8)。以下p行每行为两个整数x, y(0 < x
< n, 0 < y < m),为按顺时针给出的各顶点坐标。数据保证多边形的是凸的,无三点共线。输入数据无错误。
Output
仅一行,为最短切割线的总长度,四舍五入到小数点后3位。允许有0.001的误差。
#include<cstdio>
#include<cmath>
#include<algorithm>
int n,id[],lp=;
double v1,v2,ans=1e10;
struct pos{
double x,y;
void init(){scanf("%lf%lf",&x,&y);}
pos operator+(pos a){return (pos){x+a.x,y+a.y};}
pos operator-(pos a){return (pos){x-a.x,y-a.y};}
pos operator*(double a){return (pos){x*a,y*a};}
double operator*(pos a){return x*a.y-y*a.x;}
double dot(pos a){return x*a.x+y*a.y;}
double abs(){return sqrt(x*x+y*y);}
}ps[];
double mn,mx;
struct line{
pos a,b;
void chk(line w){
double c=w.b*b;
if(c==)return;
c=(a*w.b+w.b*w.a)/c;
if(c>0.5)c<mx&&(mx=c);
else c>mn&&(mn=c);
}
}ls[],l0[];
int main(){
scanf("%lf%lf%d",&v1,&v2,&n);
for(int i=;i<=n;++i)ps[i].init(),id[i]=i;
ps[n+]=ps[];
pos p1=(pos){,},p2=(pos){v1,},p3=(pos){v1,v2},p4=(pos){,v2};
ls[lp++]=(line){p1,p2-p1};
ls[lp++]=(line){p2,p3-p2};
ls[lp++]=(line){p3,p4-p3};
ls[lp++]=(line){p4,p1-p4};
for(int i=;i<=n;++i)l0[i]=(line){ps[i],ps[i+]-ps[i]};
do{
lp=;
double s=;
for(int i=;i<=n;++i){
int w=id[i];
mn=-1e10,mx=1e10;
for(int j=;j<lp;++j)l0[w].chk(ls[j]);
ls[lp++]=l0[w];
s+=(mx-mn)*l0[w].b.abs();
}
if(s<ans)ans=s;
}while(std::next_permutation(id+,id+n+));
printf("%.3f",ans);
return ;
}
bzoj1091: [SCOI2003]切割多边形的更多相关文章
- 【题解】切割多边形 [SCOI2003] [P4529] [Bzoj1091]
[题解]切割多边形 [SCOI2003] [P4529] [Bzoj1091] 传送门:切割多边形 \(\text{[SCOI2003] [P4529]}\) \(\text{[Bzoj1091]}\ ...
- BZOJ 1091([SCOI2003]分割多边形-分割直线)
1091: [SCOI2003]分割多边形 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 223 Solved: 82 [Submit][id=10 ...
- poj 2540 Hotter Colder 切割多边形
/* poj 2540 Hotter Colder 切割多边形 用两点的中垂线切割多边形,根据冷热来判断要哪一半 然后输出面积 */ #include <stdio.h> #include ...
- 【BZOJ】【1091】【SCOI2003】切割多边形
计算几何+枚举 我比较傻逼……一开始想了个贪心,就是这样:
- BZOJ 1091--切割多边形(几何&枚举)
1091: [SCOI2003]切割多边形 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 356 Solved: 157[Submit][Status ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 任意多边形切割/裁剪(附C#代码实现)
本实现主要参考了发表于2003年<软件学报>的<一个有效的多边形裁剪算法>(刘勇奎,高云,黄有群)这篇论文,所使用的理论与算法大都基于本文,对论文中部分阐述进行了详细解释,并提 ...
- poj3335 半交平面,多边形内核
Rotating Scoreboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5300 Accepted: 21 ...
- WebGIS裁剪算法-线裁剪多边形
在gis系统中 经常会用到一些裁剪的方法,首先推荐一个非常好用的空间分析JavaScript库--Turf.js,不仅功能强大.使用简单,同时处理速度也很快. Turf.js中提供了一中多边形的裁剪方 ...
随机推荐
- 用 Express4 写一个简单的留言板
Knowledge Dependence:阅读文本前,你需要熟悉 Node.js 编程.Express 以及相关工具和常用中间件的使用. Node.js 以其单线程异步非阻塞的特点,越来越被广大的 W ...
- strlen 字符型数组和字符数组 sizeof和strlen的区别 cin.get(input,Arsize)
strlenstrlen所作的仅仅是一个计数器的工作,它从内存的某个位置(可以是字符串开头,中间某个位置,甚至是某个不确定的内存区域)开始扫描,直到碰到第一个字符串结束符'\0'为止,然后返回计数器值 ...
- [Android Studio] *.jar 与 *.aar 的生成与*.aar导入项目方法
主要讲解Android Studio中生成aar文件以及本地方式使用aar文件的方法. 在Android Studio中对一个自己库进行生成操作时将会同时生成*.jar与*.aar文件. 分别存储位置 ...
- 采用OLEDB数据库方式向指定的Excel添加数据,怪像!
我们都知道,对Excel进行操作,其实方法是多种多样的,例如采用Office.Interop;例如采用ASPCell:例如采用NPOI:再例如采用数据库连接的方式OLEDB,etc. 还是先说说背景吧 ...
- esrdtfyghjk
两融余额止跌回升,金融股回落飘绿,千股涨停续演,沪指收复4000点未果涨逾2% 相关报道 [今日收盘]灾后重建激情抢筹 大盘两日反弹500点 [今日收盘]沪指涨近6%重回3700点 未停牌个股九成涨停 ...
- 10——operator=返回reference to *this
注意operator=返回一个引用,便于连锁赋值
- C# 加载 SQLite DLL问题
/********************************************************************************* * C# 加载 SQLite DL ...
- jQuery设置元素attribute之特殊属性
一般我们使用.attr()对某个dom元素设置attribute属性.今天在使用过程中发现在给input设置disabled属性为true时,最终元素disabled属性值解析成了disabled,并 ...
- JDBC查询数据库中的数据
只用JDBC技术查询表中的全部内容时,需要使用查询全部的SQL语句,把查询结果放到List集合中. package qddx.JDBC; import java.util.*; import java ...
- kernel/printk.c
/* * linux/kernel/printk.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Modified to make sys_s ...