原论文:Deep learning over multi-field categorical data

地址:https://arxiv.org/pdf/1601.02376.pdf

一、问题由来

    基于传统机器学习模型(如LR、FM等)的CTR预测方案又被称为基于浅层模型的方案,其优点是模型简单,预测性能较好,可解释性强;缺点主要在于很难自动提取高阶组合特征携带的信息,目前一般通过特征工程来手动的提取高阶组合特征。而随着深度学习在计算机视觉、语音识别、自然语言处理等领域取得巨大成功,其在探索特征间高阶隐含信息的能力也被应用到了CTR预测中。较早有影响力的基于深度学习模型的CTR预测方案是在2016年提出的基于因子分解机的神经网络(Factorization Machine supported Neural Network, FNN)模型,就是我们今天要分享的内容,一起来看下。

二、模型原理

    FNN模型如下图所示:

   

    对图中的一些变量进行一下解释:x是输入的特征,它是大规模离散稀疏的。它可以分成N个Field,每一个Field中,只有一个值为1,其余都为0(即one-hot)。Field i的则可以表示成  ,  为Field i的embedding矩阵。  为embedding后的向量。它由一次项  ,二次项  组成,其中K是FM中二次项的向量的维度。而后面的  则为神经网络的全连接层的表示。

    

    我们可以看出这个模型有着十分显著的特点:

    1. 采用FM预训练得到的隐含层及其权重作为神经网络的第一层的初始值,之后再不断堆叠全连接层,最终输出预测的点击率。
    2. 可以将FNN理解成一种特殊的embedding+MLP,其要求第一层嵌入后的各领域特征维度一致,并且嵌入权重的初始化是FM预训练好的。
    3. 这不是一个端到端的训练过程,有贪心训练的思路。而且如果不考虑预训练过程,模型网络结构也没有考虑低阶特征组合。

    为了方便理解,如下图所示,FNN = FM + MLP ,相当于用FM模型得到了每一维特征的嵌入向量,做了一次特征工程,得到特征送入分类器,不是端到端的思路,有贪心训练的思路。

 三、FNN的优缺点

    优点:每个特征的嵌入向量是预先采用FM模型训练的,因此在学习DNN模型时,训练开销降低,模型能够更快达到收敛。

    缺点:

    1. Embedding 的参数受 FM 的影响,不一定准确

    2. 预训练阶段增加了计算复杂度,训练效率低

    3. FNN 只能学习到高阶的组合特征;模型中没有对低阶特征建模。

 

计算广告之CTR预估-FNN模型解析的更多相关文章

  1. 计算广告之CTR预测--PNN模型

    论文为:Product-based Neural Networks for User Response Prediction 1.原理 给大家举例一个直观的场景:比如现在有一个凤凰网站,网站上面有一个 ...

  2. (读论文)推荐系统之ctr预估-DeepFM模型解析

    今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问 ...

  3. (读论文)推荐系统之ctr预估-NFM模型解析

    本系列的第六篇,一起读论文~ 本人才疏学浅,不足之处欢迎大家指出和交流. 今天要分享的是另一个Deep模型NFM(串行结构).NFM也是用FM+DNN来对问题建模的,相比于之前提到的Wide& ...

  4. CTR预估经典模型总结

    计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 ...

  5. 主流CTR预估模型的演化及对比

    https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...

  6. CTR预估评价指标介绍

    1 离线指标 1.1 LogLoss 1.1.1 KL散度 logloss使用KL散度来计算.设样本的真实分布为P,预测分布为Q,则KL散度定义如下: 这里可以通俗地把KL散度理解为相同事件空间里两个 ...

  7. CTR预估的常用方法

    1.CTR CTR预估是对每次广告的点击情况做出预测,预测用户是点击还是不点击. CTR预估和很多因素相关,比如历史点击率.广告位置.时间.用户等. CTR预估模型就是综合考虑各种因素.特征,在大量历 ...

  8. 计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践

    计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版 ...

  9. 深度CTR预估模型中的特征自动组合机制演化简史 zz

    众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有 ...

随机推荐

  1. iOS-让button按钮显示成圆角

    这里用到的属性layer是CALayer类型,属于UIView,也就是说所有UIView的子类都能使用这个属性. @property (strong, nonatomic) IBOutlet UIBu ...

  2. qt线程(转)----这篇很专业!

    本文档是自己所整理的一份文档,部分是原创,还转贴了网上的一此资料(已经标明了),(难点是多线程的编写),是有源代码的,大家可以作为参考,用到的知识是视频采集,压缩解压(xvid),实时传输(jrtp) ...

  3. 解决Ubuntu14.04在外接显示器不能指定问题的最佳分辨率

    通常这种情况发生.在System Settings -> display 你会发现多出了一个 unknown display. 这往往是因为你使用质量低劣的视频电缆,例如,几美元VGA线. 解决 ...

  4. WPF无边框实现拖动效果

    这是在做弹幕的时候遇到的一个需求 透明背景,拖动弹幕=.= private void Window_MouseLeftButtonDown(object sender, MouseButtonEven ...

  5. WCF服务的IIS托管(网站托管)

    基本思路 1.新建WCF应用程序2.注册路由(可省略,则用/….svc/….访问)配置文件 <appSettings> <add key="aspnet:UseTaskFr ...

  6. WPF 4 开发Windows 7 跳转列表(JumpList)

    原文:WPF 4 开发Windows 7 跳转列表(JumpList)      在之前写过的<Windows 7 任务栏开发系列>中我们通过Visual Studio 2008 借助微软 ...

  7. 给文件右击菜单增加7-ZIP浏览功能(用注册表设置Shell调用预览命令)

    疯狂delphi delphiXE7.XE8.XE10公开课A 群号:58592705 QQ:513187410 朱建强 BAT-给文件右击菜单增加7-ZIP浏览功能 Reg给文件右击菜单增加7-ZI ...

  8. intellij开发安卓与genymotion配合

    原文:intellij开发安卓与genymotion配合 [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http: ...

  9. 判断jQuery选择器结果为空 - CSDN博客

    原文:判断jQuery选择器结果为空 - CSDN博客 jQuery选择器获取到的是一个对象,所以无论页面上存在或者不存在元素,这个对象都不为空.因此,如果要使用jQuery检查元素再给某个页面上是否 ...

  10. 4月份本周超过 10 款最新免费 jQuery 插件

    分享 <关于我> 分享  [中文纪录片]互联网时代                 http://pan.baidu.com/s/1qWkJfcS 分享 <HTML开发MacOSAp ...