题记:

         近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线。也是本节实验课题,roc曲线的计算原理以及如果统计TP、FP、TN、FN、TPR、FPR、ROC面积等等。往往运用ROC面积评估模型准确率,一般认为越接近0.5,模型准确率越低,最好状态接近1,完全正确的模型面积为1.下面进行展开介绍:


ROC曲线的面积计算原理

一、朴素贝叶斯法的工作过程框架图

二、利用weka工具,找到训练的预处理数据

1、利用朴素贝叶斯算法对weather.nominal.arff文件进行处理,然后选择temperature打开,选择编辑找到预处理数据如图1-1所示:

图1-1 完整天气数据信息图

2、根据上面的训练元组计算每个类的先验概率,公式为P(C)

2.1、计算先验概率

P(play=yes)=9/14=0.643

P(play=no)=5/14=0.357

2.2、 计算条件概率,根据公式P(X|C)

3、再根据公式(展示其中一个元组进行概率分类X= (outlook=sunny,temperature=mid,humidity=yes,windy=sunny))代入上述数据:

3.1、 P(X|paly=yes)=P(outlook=sunny|play=yes)* P(temperature=mid|play=yes)* P(humidity=yes|play=yes)* P (outlook=sunny|play=yes))

同理计算:P(X|paly=no)

3.2、通过结果比较,得出元组play

3.3、然后进行概率的计算

4、再引用《数据挖掘概念与技术》中P244页方法,如图1-2所示:

图1-2 返回数据样例

如上图为样例非真实数据:因为根据3.3可以计算每个元组的概率,利用概率大小进行类的排序。再根据先验概率进行TP、FP、TN、FN的真实数据,并且不难算出TPR和FPR的数据

5、再引用《数据挖掘概念与技术》中P245页知识,以FPR作为x轴,TPR作为Y轴,绘制数据的ROC曲线,将4中的数据分别代入进去,得到如图1-3所示:

图1-3 返回数据图

根据以上图形,利用数学方法得到ROC曲线面积为0.9222.然后再利用weka查看工具数据,如图1-4所示:

图1-4 weka返回数据

参考资料:

[1]  使用Weka进行数据挖掘http://www.cnblogs.com/bluewelkin/p/3538599.html

[2]  WEKA使用(基础配置+垃圾邮件过滤+聚类分析+关联挖掘)http://www.cnblogs.com/bitpeach/p/3770606.html

[3] ROC曲线下面积的计算方法(http://wenku.baidu.com/view/3d2ac9202f60ddccda38a07a.html?re=view

[4] 韩家炜,数据挖掘概念与技术,P243-P245。

[5] 分类(数据挖掘) (http://wenku.baidu.com/link?url=EdT7Xxs-a_423oM-48ih-KxtTEPrXeejci0-XSM1yk9xbkZGTvWqyiZNpZwUA8a-dlf-kReHlS63u9PXXXuDJFCsdmbpZ2kex5BhwTysWHe&qq-pf-to=pcqq.c2c

【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积的更多相关文章

  1. 朴素贝叶斯算法 & 应用实例

    转载请注明出处:http://www.cnblogs.com/marc01in/p/4775440.html 引 和师弟师妹聊天时经常提及,若有志于从事数据挖掘.机器学习方面的工作,在大学阶段就要把基 ...

  2. 朴素贝叶斯算法下的情感分析——C#编程实现

    这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...

  3. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  4. C#编程实现朴素贝叶斯算法下的情感分析

    C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Lang ...

  5. 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法(Naive Bayes) 阅读目录 一.病人分类的例子 二.朴素贝叶斯分类器的公式 三.账号分类的例子 四.性别分类的例子 生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本 ...

  6. [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)

    [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...

  7. [机器学习&数据挖掘]朴素贝叶斯数学原理

    1.准备: (1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果 (2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率不全 ...

  8. 朴素贝叶斯算法--python实现

    朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 ...

  9. 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现

    关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...

随机推荐

  1. Servlet解决参数乱码问题

    为什么会产生乱码? 之所以会产生乱码,是由于服务器端和客户端的编码方式不一致造成的.客户端与服务器端的交互过程中,存在着两次数据交换:第一次,客户端向服务器端发起请求,第二次数据交换,服务器端响应客户 ...

  2. Maven打包 报 Unable to locate the Javac Compiler in: C:\Program Files\Java\jre1.8.0_73\..\lib\tools.jar

    无法找到javac 编译环境 右键项目 --> properties -->Java Build Path -->选中JRE 点击右侧 Edit 编辑 --> 把你设置的JRE ...

  3. LL LR SLR LALR 傻傻分不清

    [转] 一:LR(0),SLR(1),规范LR(1),LALR(1)的关系     首先LL(1)分析法是自上而下的分析法.LR(0),LR(1),SLR(1),LALR(1)是自下而上的分析法.   ...

  4. 设置Android Studio启动时可选最近打开过的工程

    Android Studio启动时,默认会打开最近关闭的工程. 如果想Android Studio在启动时,打开欢迎界面(Welcome to Android Studio界面),则可以通过设置Set ...

  5. 非常郁闷的 .NET中程序集的动态加载

    记载这篇文章的原因是我自己遇到了动态加载程序集的问题,而困扰了一天之久. 最终看到了这篇博客:http://www.cnblogs.com/brucebi/archive/2013/05/22/Ass ...

  6. ENode框架Conference案例分析系列之 - Quick Start

    前言 前一篇文章介绍了Conference案例的架构设计,本篇文章开始介绍Conference案例的代码实现.由于代码比较多,一开始就全部介绍所有细节,估计很多人接受不了,也理解不了.所以,我先进行一 ...

  7. [nRF51822] 15、穿戴式设备上电量检测装置的设计及细节技术点(偏专业硬件文章)

    穿戴式 设备如智能手环.智能手表一般采用几百毫安时的锂离子电池来供电.因此,与之配套的充电电路.稳压电路和电池电量检测电路便必不可少!本文主要谈谈该类消费类电子内部电池电量检测的一般方法及其优缺点. ...

  8. CSS3 Animation制作飘动的浮云和星星效果

    带平行视差效果的星星 先看效果: 如果下方未出现效果也可前往这里查看 http://sandbox.runjs.cn/show/0lz3sl9y 下面我们利用CSS3的animation写出这样的动画 ...

  9. 京东招聘Java开发人员

    软件开发工程师(JAVA) 岗位职责: 1. 负责京东核心业务系统的需求分析.设计.开发工作 2. 负责相关技术文档编写工作 3. 解决系统中的关键问题和技术难题 任职要求: 1. 踏实诚恳.责任心强 ...

  10. addUser

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...