COMP222 - 2019 - Second CA Assignment
Individual coursework
Train Deep Learning Agents
Assessment Information
Assignment Number 2 (of 2)
Weighting 10%
Assignment Circulated Thursday 14 November 2019
Deadline Monday 16 December 2019, 15:00
Submission Mode Electronic
Learning outcome assessed 3. Ability to explain how deep neural networks are constructed
and trained, and apply deep neural networks
to work with large scale datasets
Purpose of assessment To design and implement deep learning agents for classification
task
Marking criteria The marking scheme can be found in Section 2.2
Submission necessary in order No
to satisfy Module requirements?
Late Submission Penalty Standard UoL Policy.
1
1 Objective
This assignment requires you to implement deep neural networks for the two datasets, i.e.,
• Optical recognition of handwritten digits dataset
• RCV1 dataset
from https://scikit-learn.org/stable/datasets/index.html, and apply the model evaluation
methods to compare them with the two models in Assignment 1. Please make sure
that you select the same dataset as you did for the Assignment 1, if you completed the
Assignment 1.
2 DNN-based Classification
2.1 Requirement and Description
Language and Platform Python (version 3.5 or above) and Tensorflow or Keras (latest
version). You can use some libraries available on Python platform, including numpy, scipy,
代写COMP222作业、代做CA Assignment作业
scikit-learn, and matplotlib. If you intend to use libraries other than these, please consult
the demonstrator or the lecturer.
Learning Task You can choose either classification (preferred) or regression, but needs to
be the same choice as your Assignment 1 submission.
Assignment Tasks You need to implement the following functionalities:
f1 design and build two different deep neural networks, one with convolutional layer and
the other without convolutional layer;
f2 apply model evaluation on the learned models. For the materials on model evaluation,
you may take a look at the metrics explained in the lecture “model evaluation”. You
are required to implement by yourself (i.e., do not call built-in libraries)
(a) the cross-validation of 5 subsamples,
(b) the confusion matrix, and
(c) the ROC curve for one class vs. all other classes
for
(a) the two neural networks you trained in f1, and
(b) the two traditional machine learning algorithms in the first assignment.
Please also summarise your observation on the results.
2
Additional Requirements We have additional requirements that,
1. the marker can run your code directly, i.e., see the results of functionality f1 by loading
the saved models, without training.
2. You need to provide clear instructions on how to train the two models. The instructions
may be e.g., a different command or an easy way of adapting the source code.
Documentation You need to write a proper document
1. detailing how to run your program, including the software dependencies,
2. explaining how the functionalities and additional requirements are implemented, and
3. providing the details of your implementation, including e.g., the meaning of parameters
and variables, the description of your model evaluation, etc.
Submission files Your submission should include the following files:
• a file for source code,
• two files for saved models, and
• a document.
Please see Section 3 for instructions on how to package your submission files, and read the
Q&A on whether to upload the two trained models from the first assignment.
2.2 Marking Criteria
The assignment is split in a number of steps. Every step gives you some marks.
Note 1 At the beginning of the document, please include a check list indicating whether
the below marking points have been implemented successfully. Unless exceptional cases, the
length of the submitted document needs to be within 4 pages (A4 paper, 11pt font size).
Note 2 The marking of a functionality will also consider the quality of coding and the quality
of documentation. A run-able implementation alone will have up to 50% of the marks.
functionality f1: 50%
For each model (with and without convolutional layer), 20% will be for the model construction
and 5% will be on the model saving and the model file in the submission.
3
functionality f2: 50%
The model evaluation between will include
• cross validation (10%)
• confusion matrix (10%)
• ROC curve (20%)
• discussion on the discovery (10%)
For each of the four parts, 80% of the marks are for deep learning models, while 20% are for
the traditional models in the first assignment. For example, for cross validation part, if you
only do deep learning models, your marks are capped at 8% instead of 10%.
The marker will mark according to the quality of both your evaluation and the documentation.
3 Deadlines and How to Submit
• Deadline for submitting the first assignment is given at the beginning of this document.
• Please submit all the files in a single compressed file with the filename
00hstudentnumberi.tar00 or 00hstudentnumberi.zip00
For example, “201191838.tar” or “201191838.zip” if your student number is 201191838.
Submissions with other filename will not be accepted. Also, in the submission files,
please do not include your name.
• Submission is via VITAL Turnitin system.
4 Q&A
Q: The ROC curve we taught in the lecture is for binary classification, but
the models we trained are for multiple classes. What can we do?
A: As indicated, you can have one class vs. all other classes, where all other classes
are deemed as a single class.
Q: My models in the first assignment can output a classification but not a
confidence probability. What can we do for ROC curve?
A: If you think some functionality is hard to implement, please explain in the document.
The marker will then evaluate your explanation to give you a reasonable mark.
4
Q: Since we are requested to evaluate the two models from our first assignment,
shall we upload again?
A: You can upload them again if needed. Note that, the marker won’t be able to
access the first assignment when they are marking the second assignment.

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或 微信:codehelp

COMP222 - 2019的更多相关文章

  1. 2019年台积电进军AR芯片,将用于下一代iPhone

    近日,有报道表示台积电10nm 芯片可怜的收益率可能会对 2017 年多款高端移动设备的推出产生较大的影响,其中自然包括下一代 iPhone 和 iPad 机型.不过,台积电正式驳斥了这一说法,表明1 ...

  2. VS经常报错的link error 2019

    VS经常报错的link error 2019 原因如下: 可能是找得到头文件,但是相关的dll或者lib找不到,需要在配置里面添加相应的库文件. project=>configuration.. ...

  3. YTU 2019: 鞍点计算

    2019: 鞍点计算 时间限制: 1 Sec  内存限制: 64 MB 提交: 66  解决: 30 题目描述 找出具有m行n列二维数组Array的"鞍点",即该位置上的元素在该行 ...

  4. Windows Server 2019 预览版介绍

    在Windows server 2012.Windows server 2016还未完全普及的情况下,昨天Windows Server团队宣布Windows Server 2019将在2018年的下半 ...

  5. Telerik控件集-2019.R1.SP1.All

    Telerik 专注于微软.Net平台的表示层与内容管理控件,提供高度稳定性和丰富性能的组件产品DevCraft,并可应用在非常严格的环境中.Telerik拥有 Microsoft, HP, Alco ...

  6. CTF丨2019互联网安全城市巡回赛·西安站,我们来了!

    万物互联时代,网信事业发展突飞猛进,互联网悄然渗透到国民生活的每一个角落,伴随而来的网络安全威胁和风险也日渐突出.网络诈骗.钓鱼软件.勒索病毒等安全问题层出不穷,信息泄露等网络安全事件也频繁上演,给用 ...

  7. AI2(App Inventor 2)离线版服务器(2019.04.28更新)

    我们的目标:搭建一个本地多用户的App Inventor 2 服务器   演示: http://ai2.fsyz.net  [旧 win]     http://ai2n.fsyz.net [新 Ce ...

  8. Adobe Photoshop CC 2019 for Mac v20.0.4 中文版安装教程

    全新Adobe Photoshop CC 2019 mac特别版终于上线了,简称ps cc 2019,Adobe Photoshop CC 2019 for Mac v20.0.4 中文版安装教程分享 ...

  9. Python全国二级等级考试(2019)

    一.前言 2018年9月随着全国计算机等级考试科目中加入“二级Python”,也确立了Python在国内的地位,猪哥相信Python语言势必会像PS那般普及.不久的将来,谁会Python谁就能获得女神 ...

随机推荐

  1. 【面试】Java中sleep和wait的区别

    1.sleep方法是Thread类的静态方法: wait方法是Object类的成员方法 2.sleep方法使当前线程暂停执行指定的时间,让出cpu给其他线程,但是它的监控状态依然保持着,当指定的时间到 ...

  2. .net core 中使用 openssl 公钥私钥进行加解密

    这篇博文分享的是 C#中使用OpenSSL的公钥加密/私钥解密 一文中的解决方法在 .net core 中的改进.之前的博文针对的是 .NET Framework ,加解密用的是 RSACryptoS ...

  3. Redis for OPS 07:Redis 补充说明

    写在前面的话 redis 的各种架构搭建暂时就到这里,本文主要用于补充说明 Redis 的一些概念以及配置文件的相关信息. 常用词汇 缓存穿透: 类似热点数据存储 Redis 一样,对于非热点数据存储 ...

  4. -ffast-math编译选项作用

    https://stackoverflow.com/questions/7420665/what-does-gccs-ffast-math-actually-do

  5. WPF/.net core WPF 系统托盘支持

    WPF 原生不支持系统托盘图标,需要依靠其它方式处理. 1 使用 WinForm 的支持 WPF最小到系统托盘 - Arvin.Mei - 博客园 2 使用 wpf-notifyicon 库 hard ...

  6. Redis深度历险,全面解析Redis14个核心知识点

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取. 传送门: ...

  7. 软件设计之基于Java的连连看小游戏(二)——游戏基础界面的制作及事件的添加

    上次完成到游戏首页的制作,今天完成了游戏基础界面的制作以及事件的简单添加.由于功能尚未完全实现,因此游戏界面的菜单列表只是简单地添加了一下,其余菜单列表以及倒计时等在后续的制作中逐一完善. 1.首先在 ...

  8. springBoot 集成Mysql数据库

    springBoot 集成Mysql数据库 前一段时间,我们大体介绍过SpringBoot,想必大家还有依稀的印象.我们先来回顾一下:SpringBoot是目前java世界最流行的一个企业级解决方案框 ...

  9. 高强度学习训练第十一天总结:Class文件结构(二)

    常量池 可以理解为Class文件之中的资源仓库,他是Class文件结构中与其他项目关联最多的数据类型,也是占用Class文件空间最大的数据项目之一 访问标志 在常量池结束后,紧接着的俩个字节代表访问标 ...

  10. HTML学习 day03

    表单 表单   表单:表单域:包含了处理表单数据所用的程序的URL以及数据提交到服务器的方法.     表单控件:(对象.元素):包含了文本框.密码框.隐藏.多行文本框(文本域).复选框.单选框.下拉 ...