离散傅里叶变换

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
using namespace cv; //-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
//输出欢迎信息和OpenCV版本 printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION);
printf("\n\n ----------------------------------------------------------------------------\n");
} //--------------------------------------【main( )函数】-----------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-------------------------------------------------------------------------------------------------
int main()
{ //【1】以灰度模式读取原始图像并显示
Mat srcImage = imread("1.jpg", 0);
if (!srcImage.data) { printf("读取图片错误,请确定目录下是否有imread函数指定图片存在~! \n"); return false; }
imshow("原始图像", srcImage); ShowHelpText(); //【2】将输入图像延扩到最佳的尺寸,边界用0补充
int m = getOptimalDFTSize(srcImage.rows);
int n = getOptimalDFTSize(srcImage.cols);
//将添加的像素初始化为0.
Mat padded;
copyMakeBorder(srcImage, padded, 0, m - srcImage.rows, 0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0)); //【3】为傅立叶变换的结果(实部和虚部)分配存储空间。
//将planes数组组合合并成一个多通道的数组complexI
Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI); //【4】进行就地离散傅里叶变换
dft(complexI, complexI); //【5】将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
split(complexI, planes); // 将多通道数组complexI分离成几个单通道数组,planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
Mat magnitudeImage = planes[0]; //【6】进行对数尺度(logarithmic scale)缩放
magnitudeImage += Scalar::all(1);
log(magnitudeImage, magnitudeImage);//求自然对数 //【7】剪切和重分布幅度图象限
//若有奇数行或奇数列,进行频谱裁剪
magnitudeImage = magnitudeImage(Rect(0, 0, magnitudeImage.cols & -2, magnitudeImage.rows & -2));
//重新排列傅立叶图像中的象限,使得原点位于图像中心
int cx = magnitudeImage.cols / 2;
int cy = magnitudeImage.rows / 2;
Mat q0(magnitudeImage, Rect(0, 0, cx, cy)); // ROI区域的左上
Mat q1(magnitudeImage, Rect(cx, 0, cx, cy)); // ROI区域的右上
Mat q2(magnitudeImage, Rect(0, cy, cx, cy)); // ROI区域的左下
Mat q3(magnitudeImage, Rect(cx, cy, cx, cy)); // ROI区域的右下
//交换象限(左上与右下进行交换)
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
//交换象限(右上与左下进行交换)
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2); //【8】归一化,用0到1之间的浮点值将矩阵变换为可视的图像格式
//此句代码的OpenCV2版为:
//normalize(magnitudeImage, magnitudeImage, 0, 1, CV_MINMAX);
//此句代码的OpenCV3版为:
normalize(magnitudeImage, magnitudeImage, 0, 1, NORM_MINMAX); //【9】显示效果图
imshow("频谱幅值", magnitudeImage);
waitKey(); return 0;
}

详解:md,粘了也看不懂,不粘了

输入输出XML和YAML文件





【第二步】进行文件读写操作

(1)文本和数字的输入和输出







写入

#define _CRT_SECURE_NO_WARNINGS
#include "opencv2/opencv.hpp"
#include <time.h>
using namespace cv; //-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
//输出欢迎信息和OpenCV版本 printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION);
printf("\n\n ----------------------------------------------------------------------------\n");
} //-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
//改变console字体颜色
system("color 5F"); ShowHelpText(); //初始化
FileStorage fs("test.yaml", FileStorage::WRITE); //开始文件写入
fs << "frameCount" << 5;
time_t rawtime; time(&rawtime);
fs << "calibrationDate" << asctime(localtime(&rawtime));
Mat cameraMatrix = (Mat_<double>(3, 3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1);
Mat distCoeffs = (Mat_<double>(5, 1) << 0.1, 0.01, -0.001, 0, 0);
fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
fs << "features" << "[";
for (int i = 0; i < 3; i++)
{
int x = rand() % 640;
int y = rand() % 480;
fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
uchar lbp = rand() % 256; for (int j = 0; j < 8; j++)
fs << ((lbp >> j) & 1);
fs << "]" << "}";
}
fs << "]";
fs.release(); printf("\n文件读写完毕,请在工程目录下查看生成的文件~");
getchar(); return 0;
}

读取

#include "opencv2/opencv.hpp"
#include <time.h>
using namespace cv;
using namespace std; //-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
//输出欢迎信息和OpenCV版本 printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION );
printf("\n\n ----------------------------------------------------------------------------\n\n");
} int main( )
{
//改变console字体颜色
system("color 6F"); ShowHelpText(); //初始化
FileStorage fs2("test.yaml", FileStorage::READ); // 第一种方法,对FileNode操作
int frameCount = (int)fs2["frameCount"]; std::string date;
// 第二种方法,使用FileNode运算符> >
fs2["calibrationDate"] >> date; Mat cameraMatrix2, distCoeffs2;
fs2["cameraMatrix"] >> cameraMatrix2;
fs2["distCoeffs"] >> distCoeffs2; cout << "frameCount: " << frameCount << endl
<< "calibration date: " << date << endl
<< "camera matrix: " << cameraMatrix2 << endl
<< "distortion coeffs: " << distCoeffs2 << endl; FileNode features = fs2["features"];
FileNodeIterator it = features.begin(), it_end = features.end();
int idx = 0;
std::vector<uchar> lbpval; //使用FileNodeIterator遍历序列
for( ; it != it_end; ++it, idx++ )
{
cout << "feature #" << idx << ": ";
cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";
// 我们也可以使用使用filenode > > std::vector操作符很容易的读数值阵列
(*it)["lbp"] >> lbpval;
for( int i = 0; i < (int)lbpval.size(); i++ )
cout << " " << (int)lbpval[i];
cout << ")" << endl;
}
fs2.release(); //程序结束,输出一些帮助文字
printf("\n文件读取完毕,请输入任意键结束程序~");
getchar(); return 0;
}

opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)的更多相关文章

  1. opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

    ROI区域图像叠加&图像混合 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp&g ...

  2. opencv 3 core组件进阶(1 访问图像中的像素)

    访问图像像素的三类方法 ·方法一 指针访问:C操作符[ ]; ·方法二 迭代器iterator; ·方法三 动态地址计算. #include <opencv2/core/core.hpp> ...

  3. OpenCV之Core组件进阶

    颜色空间缩减 利用C++类型转换时向下取整操作,实现定义域内颜色缩减.表达式如下 Inew = (Iold/10)*10 简单的颜色空间缩减算法可由以下两步组成: (1)遍历图像矩阵的每个元素 (2) ...

  4. OpenCV 输入输出XML和YAML文件

    #include <opencv2/core/core.hpp> #include <iostream> #include <string> using names ...

  5. OpenCV——输入输出XML和YAML文件

  6. opencv core组件进阶

    1.图像在内存中存储方式,图像矩阵的大小取决于颜色模型,取决于所有的通道数:还有重要的颜色空间缩减的概念:因为如果是RGB的话,使用uchar的话,就有256^3的结合方法.所以要用到颜色缩减的方法, ...

  7. core组件进阶

    访问图像像素 存储方式 BGR连续存储有助于提升图像扫描速度. isContinuous()判断是否是连续存储. 颜色空间缩减 仅用这些颜色中具有代表性的很小的部分,就足以达到同样的效果. 将现有颜色 ...

  8. OPENCV(3) —— 对XML和YAML文件实现I/O 操作

    XML\YAML文件在OpenCV中的数据结构为FileStorage string filename = "I.xml"; FileStorage fs(filename, Fi ...

  9. OpenCV之XML和YAML文件读写

    FileStorage类 该类有两个构造函数 FileStorage::FileStorage() FileStorage::FileStorage(const string& source, ...

随机推荐

  1. pytest7-多个fixtures执行顺序

    举例: import pytest order = [] @pytest.fixture(scope='session') def s1(): order.append("s1") ...

  2. Spring 框架基础(04):AOP切面编程概念,几种实现方式演示

    本文源码:GitHub·点这里 || GitEE·点这里 一.AOP基础简介 1.切面编程简介 AOP全称:Aspect Oriented Programming,面向切面编程.通过预编译方式和运行期 ...

  3. 【阿里云IoT+YF3300】7.物联网设备表达式运算

    很多时候从设备采集的数据并不能直接使用,还需要进行处理一下.如果采用脚本处理,有点太复杂了,而采用表达式运算,则很方便地解决了此类问题. 一.  设备连接 运行环境搭建:Win7系统请下载相关的设备驱 ...

  4. Redis 文章一 之持久化机制的介绍

    我们已经知道对于一个企业级的redis架构来说,持久化是不可减少的 企业级redis集群架构:海量数据.高并发.高可用 持久化主要是做灾难恢复,数据恢复,也可以归类到高可用的一个环节里面去,比如你re ...

  5. SpringCloud之Nacos服务注册(十八)

    一 服务提供配置 pom.xml <dependency> <groupId>org.springframework.boot</groupId> <arti ...

  6. AQL基本语法

    目录: 基本的CRUD 插入 检索 更新 删除 匹配文件 排序和限制 限制 排序 组合 图操作 地理位置查询 一.数据预览 本次使用的数据共有43条,每条数据包含姓氏.年龄.活动状态和特征等六个字段 ...

  7. http和Https简介、详解

    目录 引用 一.HTTP和HTTPS的基本概念 二.HTTP与HTTPS有什么区别? 三.HTTPS的工作原理 四.HTTPS的优点 五.HTTPS的缺点 六.http切换到HTTPS 引用 超文本传 ...

  8. mysql如何解除死锁状态

    第一种: 1.查询是否锁表 show OPEN TABLES where In_use > 0; 2.查询进程(如果您有SUPER权限,您可以看到所有线程.否则,您只能看到您自己的线程) sho ...

  9. ABAP中时间戳的处理

    UTC(UTC, Universal Time Coordinated,通用协调时)时间戳,分为长时间戳和段时间戳,其中长时间戳餐开始的系统的数据元素TIMESTAMPL,类型为DEC(21,7):而 ...

  10. Web for pentester_writeup之Commands injection篇

    Web for pentester_writeup之Commands injection篇 Commands injection(命令行注入) 代码注入和命令行注入有什么区别呢,代码注入涉及比较广泛, ...