洛谷P1240-诸侯安置+递推非搜索
这道题是一题递推题,一开始自己不知道,用了搜索,只过了三个样例;
两两相同的合并,
成 1,1,3,3,5,5........n*2-1;
然后我们会容易发现一种不同与搜索的动态规划做法.
f[i,j]:=f[i,j]+f[k,j-1]*(Len[i]-(j-1)) [j-1<=k<=i-1]
1.f[i,j]表示前i列放置j个的方案,且第j个放在第i列上,
2.前面f[k,j-1]个都需要累加上来,举一个说明为什么需要累加:对于前4排放置2个的情况(平移后的),2个即可以放在第一列和第三列,也可以放在第一列和第四列,所以需要把这些分布在不同列的情况累加上来。
3.乘(Len[i]-(j-1))是因为前面k列放了j-1个棋子了,然后每行只能放一个棋子,所以第j个棋子在第i列可以放的情况就是Len[i]-(j-1),len[i]是第i列有多少行,程序中是l[i];
下面是ac代码
#include <cstdio> using namespace std; int l[],dp[+][+];
int main(){
int n,k;
scanf("%d%d",&n,&k);
if(k==){printf("1\n");return ;}
if(k>*n-){printf("0\n");return ;}
int t = ;
for(int i=;i<=n;i++)
{
l[*i-]=l[*i]=*i-;
}
dp[][]=;
for(int i=;i<=*n-;i++) //表示当前是第几行
{
for(int j=;j<=i;j++) //可以通过找规律发现,f[i][j]其实是 (f[1~i-1][j]*剩余可放列数) 的总和
{
for(int u=j-;u<i;u++)
dp[i][j]=(dp[i][j]+dp[u][j-]*(l[i]-j+))%;
}
}
int ans = ;
for(int i=k;i<=*n-;i++) //注意ans一定是f[k~2*n-1][k]的总和
{
ans =(ans+dp[i][k])%;
}
printf("%d\n",ans%);
return ;
}
洛谷P1240-诸侯安置+递推非搜索的更多相关文章
- 洛谷 P5110 块速递推
题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...
- 洛谷P5110 块速递推 [分块]
传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...
- 洛谷P1120 小木棍 [数据加强版](搜索)
洛谷P1120 小木棍 [数据加强版] 搜索+剪枝 [剪枝操作]:若某组拼接不成立,且此时 已拼接的长度为0 或 当前已拼接的长度与刚才枚举的长度之和为最终枚举的答案时,则可直接跳出循环.因为此时继续 ...
- 洛谷 P1033 自由落体 Label:模拟&&非学习区警告
题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...
- 洛谷 P1378 油滴扩展 Label:搜索
题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界.必须等一个油滴扩展完毕才能放置下一个油滴. ...
- 洛谷P1434滑雪题解及记忆化搜索的基本步骤
题目 滑雪是一道dp及记忆化搜索的经典题目. 所谓记忆化搜索便是在搜索的过程中边记录边搜索的一个算法. 当下次搜到这里时,便直接使用. 而且记忆化搜索一定要满足无后效性,为什么呢,因为如果不满足无后效 ...
- 洛谷P1021邮票面值设计 [noip1999] dp+搜索
正解:dfs+dp 解题报告: 传送门! 第一眼以为小凯的疑惑 ummm说实话没看标签我还真没想到正解:D 本来以为这么多年前的noip应该不会很难:D 看来还是太菜了鸭QAQ 然后听说题解都可以被6 ...
- 洛谷 P1141【BFS】+记忆化搜索+染色
题目链接:https://www.luogu.org/problemnew/show/P1141 题目描述 有一个仅由数字 0 与 1 组成的n×n 格迷宫.若你位于一格0上,那么你可以移动到相邻 4 ...
- 洛谷P1192 台阶问题【记忆化搜索】
题目:https://www.luogu.org/problemnew/show/P1192 题意: 给定n和k,一个人一次可以迈1~k步,问走n步有多少种方案. 思路: 本来傻乎乎上来就递归,显然会 ...
随机推荐
- Android 属性动画实战
什么是属性动画? 属性动画可以通过直接更改 View 的属性来实现 View 动画.例如: 通过不断的更改 View 的坐标来实现让 View 移动的效果: 通过不断的更改 View 的背景来实现让 ...
- 01-Spring Security框架学习
目录 01-Spring Security框架学习 简介 Spring Security 是什么 Spring Security 解决那些问题 Spring Security 的优点 历史背景 Spr ...
- 基于tp3.2的腾讯云短信验证码的实现
新手小白在公司要完成短信验证码注册功能,最初由于没有经验,网上的教程又不是很全,便参考着官方API文档,进行开发 直接进入正题:使用composer下载腾讯云短信接口(记得添加依赖).在项目目录下新建 ...
- 如何保证FPGA PCIe唤醒能满足PC的100ms 的时间要求(Autonomous Mode)?
原创By DeeZeng [ Intel FPGA笔记 ] PC 需要PCIe设备在 100ms 内启动,这样PC 才能扫描到PCIe 设备.对于 FPGA PCIe 板卡,同样也需要满足这个时间要 ...
- Mybatis学习笔记之---动态sql中标签的使用
动态Sql语句中标签的使用 (一)常用标签 1.<if> if标签通常用于WHERE语句中,通过判断参数值来决定是否使用某个查询条件, 他也经常用于UPDATE语句中判断是否更新某一个字段 ...
- pythonday02基础与运算符
今日概要 1.循环 2.字符串格式化 3.运算符 4.编码 if的嵌套 score = input('请输入成绩') score_int = int(score) if score_int >= ...
- -bash: redis: command not found
在linux中安装redis,先是拉过去安装,然后通过命令:make 进行编译 编译完成以后通过命令 make install 完成安装:结果在进行启动linux的时候执行 ...
- Codeforces 343D Water Tree
题意简述 维护一棵树,支持以下操作: 0 v:将以v为跟的子树赋值为1 1 v:将v到根节点的路径赋值为0 2 v:询问v的值 题解思路 树剖+珂朵莉树 代码 #include <set> ...
- 安装node.js、webpack、vue 和vue-cli 以及安装速度慢/不成功的解决方法
1.安装node.js 地址:https://nodejs.org/en/ 下载安装软件之后,点击下一步即可 打开dos窗口,输入cmd能快速打开,输入npm -v 和 node -v 能显示出版本 ...
- 纯数据结构Java实现(0/11)(开篇)
为嘛要写 本来按照我的风格,其实很不喜欢去写这些细节的东西,因为笔记上直接带过了. 本来按照我的风格,如果要写,那也是直接上来就干,根本不解释这些大纲,参考依据. 本来按照我的风格,不想太显山露水,但 ...