不妨假设$x\le y$,可以通过翻转整个格子序列来调整

令$a_{i}$​​为$i$​​到$y$​​的期望步数,显然有方程$a_{i}=\begin{cases}0&(i=y)\\\frac{\sum_{j=i+1}^{n}a_{j}}{n-i}+1&(i<y)\\\frac{\sum_{j=1}^{i-1}a_{j}}{i-1}+1&(i>y)\end{cases}$​​​

将其写成递推的形式,即
$$
\forall 1\le i\le y-2,a_{i}=\frac{n-i-1}{n-i}(a_{i+1}-1)+\frac{1}{n-i}a_{i+1}+1=a_{i+1}+\frac{1}{n-i}
$$
进一步的,即有$a_{i}=a_{y-1}+\sum_{j=i}^{y-2}\frac{1}{n-j}$​​,代入$a_{y+1}$的式子即
$$
a_{y+1}=\frac{\sum_{i=1}^{y}a_{i}}{y}+1=\frac{a_{y-1}+\sum_{i=1}^{y-2}(a_{y-1}+\sum_{j=i}^{y-2}\frac{1}{n-j})}{y}+1=k_{1}a_{y-1}+C_{1}
$$
(其中$k_{1}=\frac{y-1}{y},C_{1}=\frac{\sum_{i=1}^{y-2}\sum_{j=i}^{y-2}\frac{1}{n-j}}{y}+1$​​​,显然为常数,且不难​​预处理得到)

类似地,也可以得到$a_{y-1}=\frac{n-y}{n-y+1}a_{y+1}+\frac{\sum_{i=y+2}^{n}\sum_{j=y+2}^{i}\frac{1}{j-1}}{n-y+1}+1$​​(同样记为$a_{y-1}=k_{2}a_{y+1}+C_{2}$​)​​

将前者代入后者,即$a_{y-1}=k_{2}(k_{1}a_{y-1}+C_{1})+C_{2}$​​​​​​,解得$a_{y-1}=\frac{k_{2}C_{1}+C_{2}}{1-k_{1}k_{2}}$​​,将$k_{1}$​​和$k_{2}$​​的式子代入,不难得到$1-k_{1}k_{2}=\frac{n}{y(n-y+1)}$​​​

再根据前面,也即有答案$a_{x}=\frac{y(n-y+1)(k_{2}C_{1}+C_{2})}{n}+\sum_{i=x}^{y-2}\frac{1}{n-i}$(注意特判$x=y$和$y=n$)

综上,$o(n)$​​​​​预处理后即可$o(1)$​​​​​计算,时间复杂度为$o(n+T)$​​​​​

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2000005
4 #define mod 1000000007
5 #define ll long long
6 int t,n,x,y,ans,inv[N],S1[N],S2[N];
7 int main(){
8 inv[0]=inv[1]=S1[0]=S2[0]=1;
9 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
10 for(int i=1;i<N;i++)S1[i]=(S1[i-1]+inv[i])%mod;
11 for(int i=1;i<N;i++)S2[i]=(S2[i-1]+S1[i])%mod;
12 scanf("%d",&t);
13 while (t--){
14 scanf("%d%d%d",&n,&x,&y);
15 if (x>y)x=n-x+1,y=n-y+1;
16 if (x==y){
17 printf("0\n");
18 continue;
19 }
20 if (y==n){
21 printf("%d\n",(1+S1[n-x]-S1[n-y+1]+mod)%mod);
22 continue;
23 }
24 int k1=(ll)(y-1)*inv[y]%mod,k2=(ll)(n-y)*inv[n-y+1]%mod;
25 int C1=((S2[n-1]-S2[n-y+1]+mod)%mod-(ll)(y-2)*S1[n-y+1]%mod+mod)%mod;
26 int C2=((S2[n-1]-S2[y]+mod)%mod-(ll)(n-y-1)*S1[y]%mod+mod)%mod;
27 C1=((ll)C1*inv[y]+1)%mod,C2=((ll)C2*inv[n-y+1]+1)%mod;
28 ans=(ll)y*(n-y+1)%mod*(((ll)k2*C1+C2)%mod)%mod*inv[n]%mod;
29 ans=(ans+(S1[n-x]-S1[n-y+1]+mod)%mod)%mod;
30 printf("%d\n",ans);
31 }
32 return 0;
33 }

[hdu7000]二分的更多相关文章

  1. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  2. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  3. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

  4. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

  5. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  6. [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  7. jvascript 顺序查找和二分查找法

    第一种:顺序查找法 中心思想:和数组中的值逐个比对! /* * 参数说明: * array:传入数组 * findVal:传入需要查找的数 */ function Orderseach(array,f ...

  8. BZOJ 1305: [CQOI2009]dance跳舞 二分+最大流

    1305: [CQOI2009]dance跳舞 Description 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲 ...

  9. BZOJ 3110 [Zjoi2013]K大数查询 ——整体二分

    [题目分析] 整体二分显而易见. 自己YY了一下用树状数组区间修改,区间查询的操作. 又因为一个字母调了一下午. 貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log 懒得写了. [代码] ...

随机推荐

  1. Java AES 加密小试牛刀

    目录 问题出处 解决方法 方法一 方法二 方法三 补充 总结 在java开发过程中,很多时候我们都需要加密数据,例如声音.敏感信息等.我们通常使用的是 MD5加密.SHA加密.DES 加密.AES 加 ...

  2. 寻找写代码感觉(五)之Mybatis官方代码生成器的使用

    一.Mybatis Generator生成器 见名知意,官方给出的代码生成器.好处就是不用自己写实体类.接口.xml文件了,应对简单增删改查是可以的.复杂的还是需要自己手写sql的. 二.Mybati ...

  3. hdoj_Problem1.1.8_A+B for Input-Output Practice (VIII)

    A+B for Input-Output Practice (VIII) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  4. 【数据结构与算法Python版学习笔记】目录索引

    引言 算法分析 基本数据结构 概览 栈 stack 队列 Queue 双端队列 Deque 列表 List,链表实现 递归(Recursion) 定义及应用:分形树.谢尔宾斯基三角.汉诺塔.迷宫 优化 ...

  5. PyCharm中目录directory与包package的区别及相关import详解

    一.概念介绍 在介绍目录directory与包package的区别之前,先理解一个概念---模块 模块的定义:本质就是以.py结尾的python文件,模块的目的是为了其他程序进行引用. 目录(Dire ...

  6. Beta版本发布计划

    Beta版本新功能 小程序v2.0新功能 新功能列表 页面 新功能描述 图片涂鸦页 增加了马赛克方块形式的涂鸦,同样支持撤销和保存 图片裁切页 增加了图片裁切功能,实现对目标图片的尺寸进行裁切 编辑图 ...

  7. Scrum Meeting 13

    第13次例会报告 日期:2021年06月05日 会议主要内容概述: 团队成员均明确了下一步的目标,进度突飞猛进辣 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下 ...

  8. SpringBoot整合多个RabbitMQ

    一.背景 ​ 最近项目中需要用到了RabbitMQ来监听消息队列,监听的消息队列的 虚拟主机(virtualHost)和队列名(queueName)是不一致的,但是接收到的消息格式相同的.而且可能还存 ...

  9. Go语言核心36讲(Go语言进阶技术九)--学习笔记

    15 | 关于指针的有限操作 在前面的文章中,我们已经提到过很多次"指针"了,你应该已经比较熟悉了.不过,我们那时大多指的是指针类型及其对应的指针值,今天我们讲的则是更为深入的内容 ...

  10. 连续子序列的最大和 牛客网 剑指Offer

    连续子序列的最大和 牛客网 剑指Offer 题目描述 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量 ...