洛谷题面传送门

高速公路上正是补 blog 的时候,难道不是吗/doge,难不成逆在高速公路上写题/jy

首先形成的图显然是连通图并且有 \(n-1\) 条边。故形成的图是一棵树。

我们考虑什么样的树能够得到。考虑以 \(n\) 为根,由于每个点的编号都小于其父亲这个条件的存在,我们每次断开一条边时,两个连通块中编号最大的点肯定是这两个连通块中深度最浅的节点。而显然,对于一条边 \((u,v)\),如果 \(u\) 是 \(v\) 的父亲,那么断开 \((u,v)\) 时 \(v\) 肯定是所在连通块中深度最浅的节点,也就是说我们要为每个点 \(x\) 找一个祖先 \(p_x\),满足断开 \(x\) 与其父亲的边时,\(p_x\) 为其父亲所在连通块中深度最浅的节点。

考虑什么样的序列 \(p\) 符合要求。打个表发现一条链的情况答案是卡特兰数(cartesian number bushi)。而卡特兰数刚好是由 \(n\) 个左括号和 \(n\) 个右括号组成的括号序列的数量,而括号序列中每对括号肯定是不能相交的——即,要么相离,要么互相包含。因此我们猜测一组 \(p\) 符合条件,当且仅当不存在两个 \(x,y\) 满足 \(p_x,p_y,x,y\) 依次存在祖先关系。事实上这个结论是正确的可惜我不会证。这样就可以 DP 了。考虑 \(dp_{i,j}\) 表示确定了 \(i\) 祖先(注意,这里与传统的 DP 不同,因为传统的 DP 一般都假设子树内的状态已经确定,而这题是假设祖先的状态已经确定)的 \(p\),目前 \(i\) 还有 \(j\) 个祖先可以选择,有多少个钦定 \(i\) 子树内点的 \(p\) 的方法,考虑如何转移,我们枚举 \(p_i\) 是目前可行的点中,从下往上数的第几个,设为 \(c\),那么这样在钦定 \(i\) 的儿子时会 ban 掉 \(c-1\) 个祖先,同时又会为 \(u\) 的儿子新增一个符合要求的祖先——\(u\),因此我们有 \(dp_{u,j}=\sum\limits_{c=1}^j\prod\limits_{v\in\text{son}(u)}dp_{v,j-c+2}\)。这样直接转移是三方的,无法通过。不过注意到这个 \(\sum\) 可以用前缀和优化掉,具体来说我们设 \(dp_{u,j}=dp_{u,j-1}+\prod\limits_{v\in\text{son}(u)}dp_{v,j+1}\),这样记忆化搜索一下复杂度即可达到平方。

为什么会有个 freopen 呢?因为这是场 mns 的赛题……

const int MAXN=3000;
const int MOD=998244353;
int n,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dp[MAXN+5][MAXN+5];
int calc(int x,int f,int k){
if(~dp[x][k]) return dp[x][k];dp[x][k]=0;
if(k>1) dp[x][k]=calc(x,f,k-1);int res=1;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
res=1ll*res*calc(y,x,k+1)%MOD;
} dp[x][k]=(dp[x][k]+res)%MOD;
return dp[x][k];
}
int main(){
// freopen("reflection.in","r",stdin);
// freopen("reflection.out","w",stdout);
scanf("%d",&n);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
memset(dp,-1,sizeof(dp));int res=1;
for(int e=hd[n];e;e=nxt[e]){int y=to[e];res=1ll*res*calc(y,n,1)%MOD;}
printf("%d\n",res);
return 0;
}

洛谷 P6383 -『MdOI R2』Resurrection(DP)的更多相关文章

  1. 洛谷 P6071 『MdOI R1』Treequery(LCA+线段树+主席树)

    题目链接 题意:给出一棵树,有边权,\(m\) 次询问,每次给出三个数 \(p,l,r\),求边集 \(\bigcap\limits_{i=l}^rE(p,i)\) 中所有边的权值和. 其中 \(E( ...

  2. 洛谷 P6072 -『MdOI R1』Path(回滚莫队+01-trie)

    题面传送门 又是 ix35 神仙出的题,先以 mol 为敬 %%% 首先预处理出根节点到每个点路径上权值的异或和 \(dis_i\),那么两点 \(a,b\) 路径上权值的异或和显然为 \(dis_a ...

  3. 洛谷4月月赛R2

    洛谷4月月赛R2 打酱油... A.koishi的数学题  线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...

  4. 洛谷CF809C Find a car(数位DP)

    洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...

  5. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  6. 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门

    dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...

  7. 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)

    洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...

  8. 【洛谷 P4934】 礼物 (位运算+DP)

    题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...

  9. Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)

    题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...

随机推荐

  1. Golang通脉之函数

    函数是组织好的.可重复使用的.用于执行指定任务的代码块. Go语言中支持函数.匿名函数和闭包,并且函数在Go语言中属于"一等公民". 函数定义 Go语言中定义函数使用func关键字 ...

  2. 关于ORBSLAM的发展脉络

    ORBSLAM系列存在随机性的原因:RANSAC中随机数生成器的使用:跟踪.映射和回环闭合线程的不可预测的交织,这取决于操作系统调度程序,这种不可预测性使得在不同的执行中估计的关键帧的姿势可能不同,甚 ...

  3. BPMN 學習實例

    什麼是業務流程圖? What is BPMN 業務流程建模符號(BPMN)是業務流程建模的一種方法.它基於統一建模語言(UML)中活動圖的概念,以圖形符號(業務流程圖)支持業務流程的規範.BPMN為企 ...

  4. Convolutional Neural Network-week2编程题1(Keras tutorial - 笑脸识别)

    本次我们将: 学习到一个高级的神经网络的框架,能够运行在包括TensorFlow和CNTK的几个较低级别的框架之上的框架. 看看如何在几个小时内建立一个深入的学习算法. 为什么我们要使用Keras框架 ...

  5. Noip模拟31 2021.8.5

    T1 Game 当时先胡了一发$\textit{Next Permutation}$... 然后想正解,只想到贪心能求最大得分,然后就不会了.. 然后就甩个二十分的走了... 正解的最大得分(叫它$k ...

  6. 2021.8.6考试总结[NOIP模拟32]

    T1 smooth 考场上水个了优先队列多带个$log$,前$80$分的点跑的飞快,后面直接萎了. 其实只需开$B$个队列,每次向对应队列中插入新的光滑数,就能保证队列中的数是单调的. 为了保证不重, ...

  7. linux下的IO模型---学习笔记

    1.linux文件系统和缓存 文件系统接口 文件系统-一种把数据组织成文件和目录的存储方式,提供了基于文件的存取接口,并通过文件权限控制访问. 存储层次 文件系统缓存 主存(通常时DRAM)的一块区域 ...

  8. 小白自制Linux开发板 十. NES游戏玩起来

    本篇基于我们制作的Debian文件系统而展开,而且我们这会玩一些高级的操作方式--用我们的小电脑进行程序编译.   所以本篇操作全部都在我们个的开发板上完成.   1. 开发环境搭建 首先安装gcc, ...

  9. 如何反编译微信小程序👻

    如何反编译微信小程序 准备工具: 夜神模拟器(或者你可以自己准备一个安卓模拟器,有root权限.) RE文件管理器(下载地址:https://soft.ucbug.com/uploads/shouji ...

  10. Git 极速上手(超简单)

    前言:本文主要介绍了一种快速入门使用Git的方法,通过四步完成本地仓库构建和推送到远程仓库(Github.Gitee码云),简单说明最常用的命令,不需要明白Git的原理即可使用,本文不介绍具体原理. ...