用f[i][j][0/1]表示区间[i,j],i之前有没有M的最少需要多少个字符,然后分两种情况:1.可以分为两个,转移到dp[l][mid][0]+1;2.枚举断点,但当前面有M时,后面的这个不能重复,因此只能写成r-k

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mid (l+r>>1)
4 int f[105][105][2];
5 char s[105];
6 bool pd(int l,int r){
7 if (mid-l+1!=r-mid)return 0;
8 for(int i=0;i<=mid-l;i++)
9 if (s[i+l]!=s[mid+i+1])return 0;
10 return 1;
11 }
12 int dfs(int l,int r,int p){
13 if (f[l][r][p])return f[l][r][p];
14 int ans=r-l+1;
15 if (pd(l,r))ans=dfs(l,mid,0)+1;
16 for(int i=l;i<r;i++)ans=min(ans,dfs(l,i,p)+r-i);
17 if (p)
18 for(int i=l;i<r;i++)ans=min(ans,dfs(l,i,1)+dfs(i+1,r,1)+1);
19 return f[l][r][p]=ans;
20 }
21 int main(){
22 scanf("%s",s);
23 for(int i=0;s[i];i++)f[i][i][0]=f[i][i][1]=1;
24 printf("%d",dfs(0,strlen(s)-1,1));
25 }

[bzoj1068]压缩的更多相关文章

  1. [bzoj1068]压缩[区间动规]

    看了lujiaxin的blog,感觉自己好浪啊....好难过 刷题的时候不够投入,每种算法都是只写一两道就过去了,这样怎么可能进步嘛 不要总是抱怨时间太少了 都是自己不努力>_< 好啦 看 ...

  2. DP——由蒟蒻到神犇的进阶之路

    开始更新咯 DP专题[题目来源BZOJ] 一.树形DP 1.bzoj2286消耗战 题解:因为是树形结构,一个点与根节点不联通,删一条边即可, 于是我们就可以简化这棵树,把有用的信息建立一颗虚树,然后 ...

  3. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  4. BZOJ1068 [SCOI2007]压缩 区间动态规划 字符串

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1068 题目概括 (其实是复制的) 给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中 ...

  5. 【BZOJ1068】压缩(动态规划)

    [BZOJ1068]压缩(动态规划) 题面 BZOJ 洛谷 题解 比较简单的\(dp\) 设\(f[i][j]\)表示当前已经匹配到了原串的第\(i\)个位置,上一个\(M\)在第\(j\)个字符之后 ...

  6. BZOJ1068: [SCOI2007]压缩

    ... 1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 909  Solved: 566[Submit][Statu ...

  7. 【BZOJ-1068】压缩 区间DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1001  Solved: 615[Submit][Status][ ...

  8. bzoj1068:[SCOI2007]压缩

    思路:区间dp,设状态f[l][r][bo]表示区间[l,r]的答案,bo=1表示该区间可以放M也可以不放M,bo=0表示该区间不能放M,并且对于任意一个状态f,l和l-1之间均有一个M,于是就可以进 ...

  9. 2018.10.20 bzoj1068: [SCOI2007]压缩(区间dp)

    传送门 这题转移很妙啊. f[l][r][1/0]f[l][r][1/0]f[l][r][1/0]表示对于区间[l,r][l,r][l,r]有/无重复的机会时压缩的最小值. 那么可以从三种情况转移过来 ...

随机推荐

  1. InstallSheild相关

    一.关于使用InstallSheild制作安装包的总结. 1.定制化制作需要了解InstallScript语法,相关资料可以去网上查找,后续提供比较好的资料. 2.有些软件运行是需要一些环境的,譬如使 ...

  2. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  3. bzoj1858SCOI 序列操作 (线段树)

    题目大意: 给定一个长度为n的01序列为,现在有m种操作 \(0\ a\ b\) 把\([a,b]\)的数全部修改为0 \(1\ a\ b\) 把\([a,b]\)的数全部修改为1 \(2\ a\ b ...

  4. 通过ideviceinstaller获取IOS APP bundleId

    查看ios设备udid: idevice_id -l 查看ios应用的bundleId: # 安装ideviceinstaller brew install ideviceinstaller # 查看 ...

  5. SudokuSolver 1.0:用C++实现的数独解题程序 【二】

    本篇是 SudokuSolver 1.0:用C++实现的数独解题程序 [一] 的续篇. CQuizDealer::loadQuiz 接口实现 1 CQuizDealer* CQuizDealer::s ...

  6. Mybatis初始化机制

    对于任何框架而言,在使用前都要进行一系列的初始化,MyBatis也不例外.本章将通过以下几点详细介绍MyBatis的初始化过程. 1.MyBatis的初始化做了什么 2. MyBatis基于XML配置 ...

  7. UML快速概述 - All you need to know about UML

    UML 是统一建模语言的缩写,就像使用一组图表来可视化软件建模的蓝图(或设计计划).它不仅可以让您彻底评估整个概念,还可以确保团队中的每个人都在同一页面上.   UML 图可以组织成两个不同的组. 结 ...

  8. HZOI帝国2019欢乐时刻

    前言: update 只是恢复一下原来手残删掉的博客,不是在水,嘤嘤嘤 update 以后改成Stack,但是之前的就懒得改了... by 10.31 为了窝的访问量大家的好心情,模仿学长搞了一个这个 ...

  9. UVA-1016 Silly Sort

    UVA-1016 题目大意:给定一个长度为n的序列,每次操作可以交换任意两个数的位置,代价为两个数的和,求最小代价,将序列排成有序的. 首先,显然需要交换的数一定会形成环: 那么对于每一个环,我们有两 ...

  10. qgis cookbook-QgsMapRendererJob学习

    学习到渲染(QgsMapRendererJob),按照教程所讲总是输出不了图像,看了一下qgis的测试源码,发现少了一句话,加上后就可以输出了! from qgis.core import * fro ...