描述

给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行一个整数n。

接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。

对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

一个整数,表示最短Hamilton路径的长度。

样例输入

4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0

样例输出

4

样例解释

从0到3的Hamilton路径有两条,0-1-2-3和0-2-1-3。前者的长度为2+2+1=5,后者的长度为1+2+1=4

对于这种n不是很大 又要求每个点都要走一遍 自然想到BFS 但是这题BFS 会超时 我们考虑状压dp

我们把每个节点缩成一个二进制位 1表示已经走过 我们再添加另外一维 这个二进制状态从那一个点走来

就可以进行转移了 对于一个二进制状态 从 j 走来 我们考虑一个为1的位 k

dp[i][j] = min(dp[i][j],dp[i^(1 << j)][k] + d[k][j]);

d为k j 之间的路径长

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long n;
long long d[30][30],dp[(1<<20)][20];
int main()
{
scanf("%lld",&n);
for(long long i = 0;i <= n - 1;i++)
for(long long j = 0;j <= n - 1;j++)
scanf("%lld",&d[i][j]);
long long maxx = (1<<n) - 1;
memset(dp,0x3f,sizeof(dp));
dp[1][0] = 0;
for(long long i = 1;i <= maxx;i++)
for(long long j = 0;j <= n - 1 ;j++)
{
if(i & (1<<j))
{
for(long long k = 0;k <= n - 1 ; k++)
if(i & (1<<k)&&(k != j))
dp[i][j] = min(dp[i][j],dp[i^(1 << j)][k] + d[k][j]);
}
}
cout<<dp[maxx][n - 1];
}

(对于从0开始的数组 我们要在每个for中统一从0开始 我被这个卡了好久 捂脸)

【状压dp】Hamiton路径的更多相关文章

  1. BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*

    BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...

  2. CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】

    虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位                                                    \((n >> ...

  3. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  4. 最短Hamilton路径(状压dp)

    最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 ...

  5. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  6. bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)

    数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...

  7. 【BZOJ-1097】旅游景点atr SPFA + 状压DP

    1097: [POI2007]旅游景点atr Time Limit: 30 Sec  Memory Limit: 357 MBSubmit: 1531  Solved: 352[Submit][Sta ...

  8. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. Tirp(状压DP)

    Description 有一个N*N的迷宫,其中有一些宝藏,现在,小A要从入口(1,1)出发,到达出口(N,N),每次,小A只能从当前的格子走到上下左右四个格子,为了不空手而归,小A决定要拿到所以的宝 ...

随机推荐

  1. Kubernetes-Service介绍(三)-Ingress(含最新版安装踩坑实践)

    前言 本篇是Kubernetes第十篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kuberne ...

  2. MAC 安装 apache ab 压力测试工具以及遇到的坑

    ab 是apache对 http服务器进行压力测试的工具,它可以测试出服务器每秒可以处理多少请求.本文记录mac版本安装 ab 的步骤以及遇到的坑. 下载 进入 apache ab官网 下载页面. 安 ...

  3. 【c++ Prime 学习笔记】第10章 泛型算法

    标准库未给容器添加大量功能,而是提供一组独立于容器的泛型算法 算法:它们实现了一些经典算法的公共接口 泛型:它们可用于不同类型的容器和不同类型的元素 利用这些算法可实现容器基本操作很难做到的事,例如查 ...

  4. PM技术分享——《构建之法》初步实践

    软件理论 软件=程序+软件工程:软件开发活动(构建管理.源代码管理.软件设计.软件测试.项目管理)相关的内容的完成,才能完成把整个程序转化成为一个可用的软件的过程. 软件企业=软件+商业模式 软件开发 ...

  5. spring session实现session统一管理(jdbc实现)

    最近在看一些关于spring session 的知识,特做一个笔记记录一下. 在项目中经常会遇到这么一种情况,同一个web项目有时需要部署多份,然后使用nginx实现负载均衡,那么遇到的问题就是,部署 ...

  6. 开发笔记----- python3 小甜点

    一.字典内容排序 1.根据 值大小排序,默认reverse=False:从小到大排序,True:从大到小排序.例: >>> dic1 = {'a1':4,'b1':12,'c1':1 ...

  7. 【数据结构&算法】02-复杂度分析之执行效率和资源消耗

    目录 前言 复杂度 分析方法 大 O 复杂度表示法 例子-评估累加和的各种算法执行效率 算法 1(for 循环): 算法 2(嵌套 for 循环): 大 O 表示 时间复杂度分析 关注执行最多的一段代 ...

  8. js点击事件 登录

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. CSS px的理解

    px是像素.然而一个屏幕像素的多少是由屏幕的分辨率决定的. 取个极端的栗子:如果分辨率是1w*1w,你设置一个100px宽的输入框,你只占屏幕的1/100,但是如果屏幕的分辨率是100*100,那么你 ...

  10. Navicat for MySQL 批量执行多个 SQL 文件

    文件合并 type *.sql >> aaa.sql 执行sql文件 右键点击数据库