transformers---BERT

BERT模型主要包括两个部分,encoder和decoder,encoder可以理解为一个加强版的word2vec模型,以下是对于encoder部分的内容

预训练任务

  • MLM任务

    MLM任务通过单词表示来表示上下文关系
  • NSP任务

    NSP任务通过句子向量表示句间的关系

1. BERT模型的输入

  • wordpiece embedding 单词向量
  • position embedding 位置编码向量

    两种生成方式:

    • 相对位置编码
      \[PE_{(pos,2i)}=sin(\frac{pos}{10000^{\frac{2i}{model}}})
      \]
      \[PE_{(pos,2i+1)}=cos(\frac{pos}{10000^{\frac{2i}{model}}})
      \]
    • 通过模型学习生成
  • segment embedding 区分文中的上下句,应用在问答匹配中

2. self-attention

  • 句子向量

    \(\downarrow \ \ \ \ \downarrow\)

  • Input Embedding + Position Embedding

    \(\downarrow\)

  • \[X_{embedding}\in R^{batch size\ *\ seq len\ *\ embed dim}
    \]

    \(\downarrow\) 线性映射(学到多重含义,分配三个权重(\(W_Q,W_k,W_v\))

  • \(Q=Linear(X_{embedding})=X_{embedding}W_Q\)

    \(K=Linear(K_{embedding})=K_{embedding}W_K\)

    \(V=Linear(V_{embedding})=V_{embedding}W_V\)

    \(\downarrow\) multi head atention(\(head size=embed dim/head size\))

  • \(Q,K,V \rightarrow[batch size,seq len,head size,embed dim/h\)

    \((Q,K,V)^T \rightarrow[batch size,head size,
    seq len,embed dim/h]\)

    head_size:即多头注意力机制中的head, \(head size=embed dim/head num\)

    embed_size:句子中每个字的编码向量的长度

    seq_len:句子的长度

    如图:C1C2表示第一个字和第二个字的注意力机制结果

    \(Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V\)



    \(\frac{QK^T}{\sqrt{d_k}}\)的第一列和\(V\)的第一行决定了结果中的第一个值,这样保证了结果向量中每个元素包含了该句中所有字的特征

    note:

    Attention mask

    在encoder的过程中,输入句子的\(seq len\)是不等长的,此时需要对句子进行补全,如果使用0补全,使用softmax函数\(softmax=\sigma(z)=\frac{e^{z_i}}{\sum^{k}_{j=1}e^{z_j}}\),e=0时,将导致补0的部分参与到运算中

    解决办法:给补0的部分添加偏置\(Z_{illeagl}=Z_{illeagl}+bias ,\ bias\rightarrow -\infty\)

    此时,\(e^{-\infty}=0 ,\ e^{Z_{illegal}}=0\),便面了无效区参与运算。

3. Layer Normalization 残差连接

  • \(X=X_{embedding}+Attention(Q,K,V)\)

transformers---BERT的更多相关文章

  1. BERT论文解读

    本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并 ...

  2. (转) Using the latest advancements in AI to predict stock market movements

    Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog ...

  3. BERT(Bidirectional Encoder Representations from Transformers)

    BERT的新语言表示模型,它代表Transformer的双向编码器表示.与最近的其他语言表示模型不同,BERT旨在通过联合调节所有层中的上下文来预先训练深度双向表示.因此,预训练的BERT表示可以通过 ...

  4. BERT(Bidirectional Encoder Representations from Transformers)理解

    BERT的新语言表示模型,它代表Transformer的双向编码器表示.与最近的其他语言表示模型不同,BERT旨在通过联合调节所有层中的上下文来预先训练深度双向表示.因此,预训练的BERT表示可以通过 ...

  5. 文本分类实战(十)—— BERT 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  6. 【译】BERT表示的可解释性分析

    目录 从词袋模型到BERT 分析BERT表示 不考虑上下文的方法 考虑语境的方法 结论 本文翻译自Are BERT Features InterBERTible? 从词袋模型到BERT ​ Mikol ...

  7. 【译】为什么BERT有3个嵌入层,它们都是如何实现的

    目录 引言 概览 Token Embeddings 作用 实现 Segment Embeddings 作用 实现 Position Embeddings 作用 实现 合成表示 结论 参考文献 本文翻译 ...

  8. 深入理解BERT Transformer ,不仅仅是注意力机制

    来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和 ...

  9. 采用Google预训bert实现中文NER任务

    本博文介绍用Google pre-training的bert(Bidirectional Encoder Representational from Transformers)做中文NER(Name ...

  10. 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练

    BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...

随机推荐

  1. LeetCode入门指南 之 二叉树

    二叉树的遍历 递归: void traverse (TreeNode root) { if (root == null) { return null; } //前序遍历位置 traverse(root ...

  2. forEachRemaining

    ArrayList<Integer> arrayList=new ArrayList<>(); for (int i = 0; i <10; i++) { arrayLi ...

  3. C# .NetCore简单实现无限递归的功能

    1:在实际开发中,我们会经常使用到无限递归的情况,如菜单,父子级等的情况 2:Code 1 using System; 2 using System.Collections.Generic; 3 us ...

  4. MySQL-SQL基础-查询2

    mysql> create table customer(mid char(5) primary key,th date,sex char(1) default '0'); Query OK, ...

  5. nginx 开启,关闭,重启

    2021-08-191. 启动 # 判断配置文件是否正确 cd /usr/local/nginx/sbin ./nginx -t # 启动 cd usr/local/nginx/sbin ./ngin ...

  6. python manage.py migrate出错

    python manage.py migrate出错 在建立Django项目过程中执行 python manage.py migrate命令,出现如下错误: 解决办法: 编辑D:\install fi ...

  7. kratos

    技术文章 日志库的使用姿势 通过 layout 探索 kratos 运行原理 发版日志 发布日志 - kratos v2.0.5 版本发布 发布日志 - kratos v2.0.4 版本发布

  8. golang map实现原理

    这篇文章主要讲 map 的赋值.删除.查询.扩容的具体执行过程,仍然是从底层的角度展开.结合源码,看完本文一定会彻底明白 map 底层原理. 我要说明的是,这里对 map 的基本用法涉及比较少,我相信 ...

  9. 对 RESTful 的理解

    REST 全称 Representation State Transfor (资源表现层状态改变) 实际上是指客户端通过http/https协议手段来改变URI的状态转化,达到请求不同的资源的目的. ...

  10. 初识Ansible 01

    自动化运维工具有很多,从实现的功能.维护的成本.使用的系统来选择,几种常用运维工具比较: Puppet基于 Ruby 开发,采用 C/S 架构,扩展性强,基于 SSL,远程命令执行相对较弱 SaltS ...