简介

本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。

多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。

图形加载和说明

熟悉颜色的朋友应该都知道,一个颜色可以用R,G,B来表示,如果更高级一点,那么还有一个A表示透明度。通常我们用一个四个属性的数组来表示。

对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。

有了上面的知识,我们就可以对图像的颜色进行分解了。

首先需要加载一个图像,我们使用imageio.imread方法来加载一个本地图像,如下所示:

import imageio
img=imageio.imread('img.png')
print(type(img))

上面的代码从本地读取图片到img对象中,使用type可以查看img的类型,从运行结果,我们可以看到img的类型是一个数组。

class 'imageio.core.util.Array'

通过img.shape可以得到img是一个(80, 170, 4)的三维数组,也就是说这个图像的分辨率是80*170,每个像素是一个(R,B,G,A)的数组。

最后将图像画出来如下所示:

import matplotlib.pyplot as plt
plt.imshow(img)

图形的灰度

对于三维数组来说,我们可以分别得到三种颜色的数组如下所示:

red_array = img_array[:, :, 0]
green_array = img_array[:, :, 1]
blue_array = img_array[:, :, 2]

有了三个颜色之后我们可以使用下面的公式对其进行灰度变换:

Y=0.2126R + 0.7152G + 0.0722B

上图中Y表示的是灰度。

怎么使用矩阵的乘法呢?使用 @ 就可以了:

 img_gray = img_array @ [0.2126, 0.7152, 0.0722]

现在img是一个80 * 170的矩阵。

现在使用cmap="gray"作图:

plt.imshow(img_gray, cmap="gray")

可以得到下面的灰度图像:

灰度图像的压缩

灰度图像是对图像的颜色进行变换,如果要对图像进行压缩该怎么处理呢?

矩阵运算中有一个概念叫做奇异值和特征值。

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

一个矩阵的一组特征向量是一组正交向量。

即特征向量被施以线性变换 A 只会使向量伸长或缩短而其方向不被改变。

特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。

假如A是m * n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。

特征值分解可以方便的提取矩阵的特征,但是前提是这个矩阵是一个方阵。如果是非方阵的情况下,就需要用到奇异值分解了。先看下奇异值分解的定义:

\(A=UΣV^T\)

其中A是目标要分解的m * n的矩阵,U是一个 m * m的方阵,Σ 是一个m * n 的矩阵,其非对角线上的元素都是0。\(V^T\)是V的转置,也是一个n * n的矩阵。

奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵。r是一个远小于m、n的数,这样就可以进行压缩矩阵。

通过奇异值分解,我们可以通过更加少量的数据来近似替代原矩阵。

要想使用奇异值分解svd可以直接调用linalg.svd 如下所示:

U, s, Vt = linalg.svd(img_gray)

其中U是一个m * m矩阵,Vt是一个n * n矩阵。

在上述的图像中,U是一个(80, 80)的矩阵,而Vt是一个(170, 170) 的矩阵。而s是一个80的数组,s包含了img中的奇异值。

如果将s用图像来表示,我们可以看到大部分的奇异值都集中在前的部分:

这也就意味着,我们可以取s中前面的部分值来进行图像的重构。

使用s对图像进行重构,需要将s还原成80 * 170 的矩阵:

# 重建
import numpy as np
Sigma = np.zeros((80, 170))
for i in range(80):
Sigma[i, i] = s[i]

使用 U @ Sigma @ Vt 即可重建原来的矩阵,可以通过计算linalg.norm来比较一下原矩阵和重建的矩阵之间的差异。

linalg.norm(img_gray - U @ Sigma @ Vt)

或者使用np.allclose来比较两个矩阵的不同:

np.allclose(img_gray, U @ Sigma @ Vt)

或者只取s数组的前10个元素,进行重新绘图,比较一下和原图的区别:

k = 10
approx = U @ Sigma[:, :k] @ Vt[:k, :]
plt.imshow(approx, cmap="gray")

可以看到,差异并不是很大:

原始图像的压缩

上一节我们讲到了如何进行灰度图像的压缩,那么如何对原始图像进行压缩呢?

同样可以使用linalg.svd对矩阵进行分解。

但是在使用前需要进行一些处理,因为原始图像的img_array 是一个(80, 170, 3)的矩阵--这里我们将透明度去掉了,只保留了R,B,G三个属性。

在进行转换之前,我们需要把不需要变换的轴放到最前面,也就是说将index=2,换到index=0的位置,然后进行svd操作:

img_array_transposed = np.transpose(img_array, (2, 0, 1))
print(img_array_transposed.shape) U, s, Vt = linalg.svd(img_array_transposed)
print(U.shape, s.shape, Vt.shape)

同样的,现在s是一个(3, 80)的矩阵,还是少了一维,如果重建图像,需要将其进行填充和处理,最后将重建的图像输出:

Sigma = np.zeros((3, 80, 170))

for j in range(3):
np.fill_diagonal(Sigma[j, :, :], s[j, :]) reconstructed = U @ Sigma @ Vt
print(reconstructed.shape) plt.imshow(np.transpose(reconstructed, (1, 2, 0)))

当然,也可以选择前面的K个特征值对图像进行压缩:

approx_img = U @ Sigma[..., :k] @ Vt[..., :k, :]
print(approx_img.shape)
plt.imshow(np.transpose(approx_img, (1, 2, 0)))

重新构建的图像如下:

对比可以发现,虽然损失了部分精度,但是图像还是可以分辨的。

总结

图像的变化会涉及到很多线性运算,大家可以以此文为例,仔细研究。

本文已收录于 http://www.flydean.com/08-python-numpy-linear-algebra/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

NumPy之:多维数组中的线性代数的更多相关文章

  1. Numpy 笔记: 多维数组的切片(slicing)和索引(indexing)【转】

    目录 切片(slicing)操作 索引(indexing) 操作 最简单的情况 获取多个元素 切片和索引的同异 切片(slicing)操作 Numpy 中多维数组的切片操作与 Python 中 lis ...

  2. 初识numpy的多维数组对象ndarray

    PS:内容来源于<利用Python进行数据分析> 一.创建ndarray 1.array :将一个序列(嵌套序列)转换为一个数组(多维数组) In[2]: import numpy as ...

  3. Python数据分析 | Numpy与1维数组操作

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/33 本文地址:http://www.showmeai.tech/article-det ...

  4. 剑指Offer-【面试题03:二维数组中的查找】

    package com.cxz.question3; /* * 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序. * 请完成一个函数,输入这样的一个二维数组和 ...

  5. 剑指Offer面试题:2.二维数组中的查找

    一.题目:二维数组中的查找 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  6. php如何去掉二维数组中重复的元素?

    $arr=array("=>array("a","b")); 我想得到的结果是:只输出第一项(第一项和第三项相同,去第一项)和第二项这个怎么解决 ...

  7. 剑指Offer 二维数组中的查找

    题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路法一: * 矩阵是 ...

  8. 剑指offer系列——二维数组中,每行从左到右递增,每列从上到下递增,设计算法找其中的一个数

    题目:二维数组中,每行从左到右递增,每列从上到下递增,设计一个算法,找其中的一个数 分析: 二维数组这里把它看作一个矩形结构,如图所示: 1 2 8 2 4 9 12 4 7 10 13 6 8 11 ...

  9. 剑指offer一:二维数组中的查找

    题目: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路: 这是一个顺序二维 ...

随机推荐

  1. fiddler操作详情

    1.设置fiddler请求过滤 2.请求与响应的格式内容  3.拦截请求操作 a.按F11开始拦截,发送请求 b.修改请求数据 c.SHIFT+F11关闭拦截 d.run to complete,把修 ...

  2. 自动发布.NET Core Web应用

    1 原因和目的 相信很多开发者都需要将自己的编写的应用进行编译并部署到服务器上,这个过程在个人或小型团队的项目中都是一个简单的事情.但是对于并行化开发而言,就需要通过工具来辅助这个过程.于是,我参考了 ...

  3. 性能工具之stress工具使用教程(带源码说明)

      stress是一个在linux下的压力测试小工具. 我看到有些人用这个工具来描述一些资源耗尽的场景,也有人用它来做混沌测试中.请使用者要注意,这个工具并不是模拟业务问题的,是模拟系统级问题的.所以 ...

  4. 俄罗斯方块(c++)

    这个俄罗斯方块是用c++基于windows控制台制作的. 源码地址:https://github.com/Guozhi-explore 话不多说,先上图感受一下:(控制台丑陋的界面不是我的锅emmm) ...

  5. 【题解】 hdu2955 Robberies

    有抱负的罗伊·劫匪已经看过很多美国电影,他知道坏人通常会被抓住,经常是因为他们太贪心了.他决定在银行抢劫案中工作一段时间,然后退休后到一所大学从事一份舒适的工作. 题目: 罗伊去几个银行偷盗,他既想多 ...

  6. 复习Spring第三课--数据源配置的多种方式

    spring数据源配置可以说分为:spring容器自带连接池.项目中创建连接池.服务器创建连接池三种 一.spring容器自带连接池   Spring本身也提供了一个简单的数据源实现类DriverMa ...

  7. Kubernetes使用节点亲缘性将POD调度到特定节点上

    节点污点可以用来让pod远离特定的节点,尽量在不修改已有pod信息的前提,通过在节点添加污点信息,来拒绝pod在某些节点上的部署. 而现在介绍一种叫做节点亲缘性,通过明确的在pod中添加的信息,来决定 ...

  8. Redis之Sentinel

    Redis的主从复制模式下,一旦主节点由于故障不能提供服务,需要人工将从节点晋升为主节点,同时还要通知应用方更新主节点地址,对于很多应用场景这种故障处理的方式是无法接受的.可喜的是Redis从 2.8 ...

  9. ExtJs4学习(四):Extjs 中id与itemId的区别

       为了方便表示或是指定一个组件的名称,我们通常会使用id或者itemId进行标识命名.(推荐尽量使用itemId,这样可以减少页面唯一标识而产生的冲突) id:   id是作为整个页面的Compo ...

  10. Hibernate框架(二)POJO对象的操作

    POJO对象其实就是我们的实体,这篇博客总结一下框架对POJO对象对应数据库主键的生成策略,和一些对POJO对象的简单增删改查的操作. 一,Hibernate框架中主键的生成策略有三种方式: 1,数据 ...