Content

某个人去参加比赛,\(n\) 个评委分别给他打分 \(a_1,a_2,\dots,a_n\)。这个人可以最多执行 \(m\) 次操作,每次操作将一个评委的分数加 \(1\)。定义他的最终分数为去掉一个最高分和一个最低分后的剩余得分的总和。求可能最高的最终分数。

数据范围:\(3\leqslant n\leqslant 10^5\),\(0\leqslant m,a_i\leqslant 10^9\)。

Solution

本题解我们来分 Subtask 来讲解。

Subtask 1 (5 pts):\(m=0\)

这一个部分分其实是很好拿的。我们只需要将所有评委的分数排个序,然后统计一下第 \(2\sim n-1\) 个人的分数和即可。

Subtask 2 (10 pts):\(n=3\)

这个 Subtask 对于启发正解很有作用。

我们不妨先花费若干次操作,把第 \(2\) 高的分数和最高的分数齐平。当然在这里如果就把操作数给用完了,那么就直接可以统计结果了。

如果第 \(2\) 高的分数和最高的分数齐平了的时候,操作数还没有用完,我们就把剩余的操作数平均分成两份(如果多出了一份先丢在一边)。然后我们把这两份分别分给第 \(2\) 高的分数和最高的分数。多出的一份无论分给谁都不会影响最终的结果,因此就可以直接输出第 \(2\) 高的分数了。

Subtask 3 (15 pts):\(n,m\leqslant 10^3\)

这个 Subtask 你随便怎么暴力模拟应该都可以过,因此不做赘述。

Subtask 4 (70 pts):正解

我们回到 Subtask 2,受到其中均分的启发,我们不妨先让第 \(2\sim n-1\) 高的分数和最高的分数齐平。当然在这里如果就把操作数给用完了,那么就直接可以统计结果了。

如果全部齐平了还没用完操作,我们就把剩余的操作数平均分成 \(n-1\) 份(多出的分不出来的操作数先丢在一边,留做备用)。然后先把这 \(n-1\) 份平均分给第 \(1\sim n-1\) 高的分数,然后再去看是否多出的操作数。如果有多出的操作数,我们将一个操作数分给最高的分数,再将剩余的操作数随便分给第 \(2\sim n-1\) 的分数中的任意几个(每个人分 \(1\) 个操作数)就可以了。

Code

ll a[100007];

int main() {
int n = Rint; ll m = Rll;
ll ans = 0;
F(int, i, 1, n) a[i] = Rint;
sort(a + 1, a + n + 1);
if(m) {
F(int, i, 2, n - 1) {
int add = min(a[n] - a[i], m);
a[i] += add, m -= add;
}
int sum = m / (n - 1) * (n - 1), eve = sum / (n - 1);
F(int, i, 2, n) a[i] += eve;
m -= sum;
if(m) {
a[n]++, m--;
F(int, i, 2, n - 1)
a[i] = a[i] + min(1ll, m), m = max(m - 1, 0ll);
}
}
F(int, i, 2, n - 1) ans += a[i];
return write(ans), 0;
}

LuoguP7713 「EZEC-10」打分 题解的更多相关文章

  1. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

  2. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  3. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  4. 洛谷比赛 「EZEC」 Round 4

    洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...

  5. 【转】具透 | 你可能不知道,iOS 10 有一个中国「特供」的联网权限功能

    9 月底,苹果正式在北京成立了苹果中国研发中心.近几年,我们也在每年更新的 iOS 系统中不断看到,苹果对中国市场的关照.从早前的九宫格输入法,到最近的骚扰电话拦截,都照顾了国内用户的需求. 在 iO ...

  6. Windows 10 如何使用「系统还原」功能备份系统状态和配置

    https://www.sysgeek.cn/windows-10-system-restore/ 在 Windows 10 系统中,「系统还原」功能旨在创建配置快照,并在检测到系统更改时将其工作状态 ...

  7. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  8. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  9. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

随机推荐

  1. 数值最优化:一阶和二阶优化算法(Pytorch实现)

    1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小 ...

  2. Codeforces 1606F - Tree Queries(虚树+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 显然我们选择删除的点连同 \(u\) 会形成一个连通块,否则我们如果选择不删除不与 \(u\) 在同一连通块中的点,答案一定更优. 注意到 ...

  3. Codeforces 1464F - My Beautiful Madness(树的直径)

    Codeforces 题面传送门 & 洛谷题面传送门 树上数据结构大杂烩(?) 首先考虑什么样的点能够在所有路径的 \(d\) 邻居的交集内.显然如果一个点在一条路径的 \(d\) 邻居内则必 ...

  4. Session和Cookie的原理,以及在分布式应用中出现的问题和解决方案

    产生原因 由于http协议是无状态的,同一个浏览器对服务器的两次请求之间是没有关系的,服务器认为两次请求都是全新的请求,不会记住上次请求成功的数据.然而现有的业务常常需要服务器能记住用户的访问情况, ...

  5. 文件IO与标准IO的区别

    文件IO与标准IO的区别 文件I/O就是操作系统封装了一系列函数接口供应用程序使用,通过这些接口可以实现对文件的读写操作,文件I/O是采用系统直接调用的方式,因此当使用这些接口对文件进行操作时,就会立 ...

  6. 苹果ios通过描述文件获取udid

    苹果ios通过描述文件获取udid 需要准备的东西 1,安装描述文件只支持https的回调地址,所以需要申请https域名 2,描述文件签名,不安装也可,只要能接受红色的字 步骤: 1,准备xml文件 ...

  7. oracle中char],varchar,varchar2

    VARCHAR.VARCHAR2.CHAR的区别 1.CHAR的长度是固定的,而VARCHAR2的长度是可以变化的, 比如,存储字符串"abc",对于CHAR (20),表示你存储 ...

  8. idea数据库报错java.lang.ClassNotFoundException: com.mysql.jdbc.Driver

    通过idea操作数据库,进行数据的增加,运行时报错java.lang.ClassNotFoundException: com.mysql.jdbc.Driver 原因:没有导入mysql-connec ...

  9. 用前端表格技术构建医疗SaaS 解决方案

    电子健康档案(Electronic Health Records, EHR)是将患者在所有医疗机构产生的数据(病历.心电图.医疗影像等)以电子化的方式存储,通过在不同的医疗机构之间共享,让患者面对不同 ...

  10. 100个Shell脚本——【脚本4】自定义rm命令

    [脚本4]自定义rm命令 linux系统的rm命令太危险,一不小心就会删除掉系统文件. 写一个shell脚本来替换系统的rm命令,要求当删除一个文件或者目录时,都要做一个备份,然后再删除.下面分两种情 ...