1、Model representation

  • Our Training Set [训练集]:

  • We will start with this ‘’Housing price prediction‘’ example first of fitting linear functions, and we will build on this to eventually have more complex models

2、Cost function

  • 代价函数(平方误差函数):It figures out how to fit the best possible straight line to our data
  • So how to choose θi's ?

  • and just try:

  • The parameters we choose determine the accuracy of the straight line we get relative to our training set
  • But there is modeling error 建模误差

  • Our goal is to select the model parameters that minimize the sum of squares of modeling errors

  • That is to minimize the cost function!

  • summary:

2-1、Cost function introduction I

  • We look up some plots to understand the cost function

2-2、Cost function introduction II

  • Let's take a look at the three-dimensional space diagram of the cost function(also called a convex function 凸函数)

  • And here is an example of a contour figure:

  • The contour figure is a more convenient way to visualize the cost function

3、Gradient descent

  • It turns out gradient descent(梯度下降) is a more general algorithm and is used not only in linear regression. I will introduce how to use gradient descent for minimizing some arbitrary function J
  • The formula of the batch gradient descent algorithm :

4、Gradient descent intuition

  • Derivative term purpose :get closer to the minimum

  • Learning rate α

  • But what if my parameter θ1 is already at a local minimum?
  • Gradient descent can converge to a local minimum, even with the learning rate α fixed

5、Gradient descent for linear regression

Machine learning(2-Linear regression with one variable )的更多相关文章

  1. Machine Learning No.1: Linear regression with one variable

    1. hypothsis 2. cost function: 3. Goal: 4. Gradient descent algorithm repeat until convergence { (fo ...

  2. [Machine Learning] 多变量线性回归(Linear Regression with Multiple Variable)-特征缩放-正规方程

    我们从上一篇博客中知道了关于单变量线性回归的相关问题,例如:什么是回归,什么是代价函数,什么是梯度下降法. 本节我们讲一下多变量线性回归.依然拿房价来举例,现在我们对房价模型增加更多的特征,例如房间数 ...

  3. Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning (解读人:闫克强)

    文献名:Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectr ...

  4. 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

    在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...

  5. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  6. Andrew Ng Machine Learning 专题【Linear Regression】

    此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...

  7. CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance

    源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...

  8. 机器学习之单变量线性回归(Linear Regression with One Variable)

    1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...

  9. [笔记]机器学习(Machine Learning) - 01.线性回归(Linear Regression)

    线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数 ...

  10. Machine Learning No.2: Linear Regression with Multiple Variables

    1. notation: n = number of features x(i) = input (features) of ith training example  = value of feat ...

随机推荐

  1. go build 与go install

    相同点都能生成可执行文件 不同点go build 不能生成包文件, go install 可以生成包文件go build 生成可执行文件在当前目录下, go install 生成可执行文件在bin目录 ...

  2. SpringMVC执行流程总结

    SpringMVC 执行流程: 用户发送请求至前端控制器 DispatcherServlet DispatcherServlet 收到请求调用处理映射器 HandlerMapping 处理映射器根据请 ...

  3. 洛谷P1449——后缀表达式(栈模拟)

    题目描述 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优先级). 如:3*(5–2)+7对应 ...

  4. 安卓gradle时报错"ERROR: Plugin with id 'com.android.application' not found."

    在build.gradle中更改gradle插件版本号 buildscript { repositories { google() jcenter() } dependencies { //版本号请根 ...

  5. 【OI】WERTYU UVa 10082

    题目: A common typing error is to place the hands on the keyboard one row to the right of the correct ...

  6. dede调用数据时,字符串替换函数使用

    {dede:sql sql="SELECT typename,typedir,typeimg FROM #@__arctype where topid=30 limit 0,6"} ...

  7. Jmeter系列(15)- 常用断言之大小断言

    大小断言 大小断言验证响应数据size大小,它的作用范围有主Sample与子Sample:适用场景,判断附件下载的大小,比如项目安装包 完整响应:全部响应信息 响应头:响应头信息,比如http协议的头 ...

  8. javascript Date 日期格式化 formatDate, require.js 模块 支持全局js引入 / amd方式加载

    * 引入AMD加载方式: require.js CDN https://cdn.bootcss.com/require.js/2.3.5/require.js *  创建模块文件./js/util/d ...

  9. mysql 添加远程访问

    第一种:mysql 5.0(两种方式) 一. 在命令窗口输入,mysql -u root -p  回车,并输入密码 执行 use mysql 执行下面句子,查看权限,root默认权限为localhos ...

  10. django url配置-反向解析-视图函数-HttpRequest对象-HttpResponse对象-cookies-session-redis缓存session

    """ --视图概述:-- 作用:视图接受WEB请求,并响应WEB请求 本质:视图就是一个python中的函数 响应: 1.网页: 一.重定向 二.错误视图 400,50 ...