P1912-[NOI2009]诗人小G【四边形不等式,单调队列】
正题
题目链接:https://www.luogu.com.cn/problem/P1912
题目大意
给出\(n\)个字符串,把这些字符串依次用空格(算一个长度)连接分成若干段,若一段长度为\(x\),那么代价是\(|x-L|^P\)
求代价和最小的方案,如果代价大于\(1e18\)则输出其他东西
\(1\leq n\leq 10^5,1\leq L\leq 3\times 10^6,1\leq P\leq 10\)
解题思路
\(s_i\)表示前\(i\)个字符串的长度和加\(i\),那么有转移方程
\]
这个转移很麻烦不能直接用单调队列之类的优化,但是它满足四边形不等式
\(w_{i,j}=|s_i-s_j-1-L|^P\),然后满足
\]
这里就不证明了,因为证明需要用到求导。
感谢理解的话可以发现因为有个\(abs\),所以对于一个决策来说是先下后上,而且两个决策最多只有一个交点。
所以有决策单调性,我们用单调队列维护一个该决策和它的下一个决策的交换点\(k_i\),然后每次判断新加入的点与队尾的前一个的交换点是否会代替掉队尾即可。
求交换点的话用二分就好了。
时间复杂度\(O(Tn\log n)\)
怕转移太大可以用\(long\ double\)存,因为如果很大的时候精度就不需要管了,我们只需要知道它是否超过\(1e18\)就好了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long double
using namespace std;
const int N=1e5+10;
int T,n,L,P,p[N],k[N],q[N];
ll f[N],s[N];
char st[N][31];
ll power(ll x,int b){
ll ans=1;
while(b){
if(b&1)ans=ans*x;
x=x*x;b>>=1;
}
return ans;
}
ll calc(int j,int i)
{return f[j]+power(fabs(s[i]-s[j]-1-L),P);}
int bound(int i,int j){
int l=i,r=n;
while(l<=r){
int mid=(l+r)>>1;
if(calc(i,mid)<calc(j,mid))l=mid+1;
else r=mid-1;
}
return l;
}
void print(int n){
if(!n)return;print(p[n]);
for(int i=p[n]+1;i<n;i++)
printf("%s ",st[i]);
puts(st[n]);
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&L,&P);
for(int i=1;i<=n;i++){
scanf("%s",st[i]);
s[i]=s[i-1]+strlen(st[i])+1;
}
int head=1,tail=1;q[1]=0;
for(int i=1;i<=n;i++){
while(head<tail&&k[head]<=i)head++;
f[i]=calc(q[head],i);p[i]=q[head];
while(head<tail&&k[tail-1]>=bound(q[tail],i))tail--;
k[tail]=bound(q[tail],i);q[++tail]=i;
}
if(f[n]>1e18)puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]),print(n);
puts("--------------------");
}
return 0;
}
P1912-[NOI2009]诗人小G【四边形不等式,单调队列】的更多相关文章
- P1912 [NOI2009]诗人小G
P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- [NOI2009]诗人小G 四边形优化DP
题目传送门 f[i] = min(f[j] + val(i,j); 其中val(i,j) 满足 四边形dp策略. 代码: #include<bits/stdc++.h> using nam ...
- 洛谷P1912 [NOI2009]诗人小G(决策单调性)
传送门 题解 决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥…… //minamoto #include<iostream> #include<cstdio> ...
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- 1563: [NOI2009]诗人小G
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- LG1912 [NOI2009]诗人小G
题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...
- [NOI2009] 诗人小G [题解]
诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...
随机推荐
- 数学log的基本知识
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然.这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数, 在简单的情况下,乘数中的对数计数因子.如果a的x次方等于N(a>0 ...
- wpf Button 动态改变效果
<Button x:Name="LearnMore" Grid.Row="6" HorizontalAlignment="Left&quo ...
- COM笔记-引用计数
参考网站:https://www.cnblogs.com/fangyukuan/archive/2010/06/06/1752621.html com组件将维护一个称作是引用计数的数值.当客户从组件取 ...
- asp.net MVC 的路由匹配
- Leaflet 中 删除 一个 标记(Marker)
参考:https://blog.csdn.net/qq_34922009/article/details/81184004 下面是我在Leaflet官方文档所找到的答案 ,希望可以帮助到大家 比如以下 ...
- WPF 中的style 样式
WPF相较于以前学的WinForm,WPF在UI设计与动画方面的炫丽是最吸引我来学习的.在WPF中XMAL代码的引入使得代码的编写能够前后端分离,为获得更好的界面,也使得我们不得不分出一半的时间花在前 ...
- Golang gomail 发送邮件 --初使用
gomail是一个第三方库,可以发送邮件 安装:go get -u github.com/go-gomail/gomail 使用示例: m := gomail.NewMessage() m.SetHe ...
- 高德地图——添加标记的两种方法&删除地标记的两种方法
添加标记: 1.marker.setMap(map); 2.marker.add([marker]); 删除标记: 1.marker.setMap(null); 2 map.remove([marke ...
- 使用uView UI+UniApp开发微信小程序
在前面随笔的介绍中,我们已经为各种框架,已经准备了Web API.Winform端.Bootstrap-Vue的公司动态网站前端.Vue&Element的管理前端等内容,基本都是基于Web A ...
- Qt之文件操作
虽然文件操作是一项很常用的功能,但是总记不住,今天就干脆记了一下笔记,以后好查阅. 在Qt中,主要使用的是QFile类进行文件操作,因此要包括#include <QFile>头文件.下面就 ...