简介

时间应该是在数据处理中经常会用到的一种数据类型,除了Numpy中datetime64 和 timedelta64 这两种数据类型之外,pandas 还整合了其他python库比如 scikits.timeseries 中的功能。

时间分类

pandas中有四种时间类型:

  1. Date times : 日期和时间,可以带时区。和标准库中的 datetime.datetime 类似。
  2. Time deltas: 绝对持续时间,和 标准库中的 datetime.timedelta 类似。
  3. Time spans: 由时间点及其关联的频率定义的时间跨度。
  4. Date offsets:基于日历计算的时间 和 dateutil.relativedelta.relativedelta 类似。

我们用一张表来表示:

类型 标量class 数组class pandas数据类型 主要创建方法
Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range
Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_timedelta or timedelta_range
Time spans Period PeriodIndex period[freq] Period or period_range
Date offsets DateOffset None None DateOffset

看一个使用的例子:

In [19]: pd.Series(range(3), index=pd.date_range("2000", freq="D", periods=3))
Out[19]:
2000-01-01 0
2000-01-02 1
2000-01-03 2
Freq: D, dtype: int64

看一下上面数据类型的空值:

In [24]: pd.Timestamp(pd.NaT)
Out[24]: NaT In [25]: pd.Timedelta(pd.NaT)
Out[25]: NaT In [26]: pd.Period(pd.NaT)
Out[26]: NaT # Equality acts as np.nan would
In [27]: pd.NaT == pd.NaT
Out[27]: False

Timestamp

Timestamp 是最基础的时间类型,我们可以这样创建:

In [28]: pd.Timestamp(datetime.datetime(2012, 5, 1))
Out[28]: Timestamp('2012-05-01 00:00:00') In [29]: pd.Timestamp("2012-05-01")
Out[29]: Timestamp('2012-05-01 00:00:00') In [30]: pd.Timestamp(2012, 5, 1)
Out[30]: Timestamp('2012-05-01 00:00:00')

DatetimeIndex

Timestamp 作为index会自动被转换为DatetimeIndex:

In [33]: dates = [
....: pd.Timestamp("2012-05-01"),
....: pd.Timestamp("2012-05-02"),
....: pd.Timestamp("2012-05-03"),
....: ]
....: In [34]: ts = pd.Series(np.random.randn(3), dates) In [35]: type(ts.index)
Out[35]: pandas.core.indexes.datetimes.DatetimeIndex In [36]: ts.index
Out[36]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None) In [37]: ts
Out[37]:
2012-05-01 0.469112
2012-05-02 -0.282863
2012-05-03 -1.509059
dtype: float64

date_range 和 bdate_range

还可以使用 date_range 来创建DatetimeIndex:

In [74]: start = datetime.datetime(2011, 1, 1)

In [75]: end = datetime.datetime(2012, 1, 1)

In [76]: index = pd.date_range(start, end)

In [77]: index
Out[77]:
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',
'2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',
'2011-01-09', '2011-01-10',
...
'2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
'2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
'2011-12-31', '2012-01-01'],
dtype='datetime64[ns]', length=366, freq='D')

date_range 是日历范围,bdate_range 是工作日范围:

In [78]: index = pd.bdate_range(start, end)

In [79]: index
Out[79]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
'2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
'2011-01-13', '2011-01-14',
...
'2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
'2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
'2011-12-29', '2011-12-30'],
dtype='datetime64[ns]', length=260, freq='B')

两个方法都可以带上 start, end, 和 periods 参数。

In [84]: pd.bdate_range(end=end, periods=20)
In [83]: pd.date_range(start, end, freq="W")
In [86]: pd.date_range("2018-01-01", "2018-01-05", periods=5)

origin

使用 origin参数,可以修改 DatetimeIndex 的起点:

In [67]: pd.to_datetime([1, 2, 3], unit="D", origin=pd.Timestamp("1960-01-01"))
Out[67]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)

默认情况下 origin='unix', 也就是起点是 1970-01-01 00:00:00.

In [68]: pd.to_datetime([1, 2, 3], unit="D")
Out[68]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)

格式化

使用format参数可以对时间进行格式化:

In [51]: pd.to_datetime("2010/11/12", format="%Y/%m/%d")
Out[51]: Timestamp('2010-11-12 00:00:00') In [52]: pd.to_datetime("12-11-2010 00:00", format="%d-%m-%Y %H:%M")
Out[52]: Timestamp('2010-11-12 00:00:00')

Period

Period 表示的是一个时间跨度,通常和freq一起使用:

In [31]: pd.Period("2011-01")
Out[31]: Period('2011-01', 'M') In [32]: pd.Period("2012-05", freq="D")
Out[32]: Period('2012-05-01', 'D')

Period可以直接进行运算:

In [345]: p = pd.Period("2012", freq="A-DEC")

In [346]: p + 1
Out[346]: Period('2013', 'A-DEC') In [347]: p - 3
Out[347]: Period('2009', 'A-DEC') In [348]: p = pd.Period("2012-01", freq="2M") In [349]: p + 2
Out[349]: Period('2012-05', '2M') In [350]: p - 1
Out[350]: Period('2011-11', '2M')

注意,Period只有具有相同的freq才能进行算数运算。包括 offsets 和 timedelta

In [352]: p = pd.Period("2014-07-01 09:00", freq="H")

In [353]: p + pd.offsets.Hour(2)
Out[353]: Period('2014-07-01 11:00', 'H') In [354]: p + datetime.timedelta(minutes=120)
Out[354]: Period('2014-07-01 11:00', 'H') In [355]: p + np.timedelta64(7200, "s")
Out[355]: Period('2014-07-01 11:00', 'H')

Period作为index可以自动被转换为PeriodIndex:

In [38]: periods = [pd.Period("2012-01"), pd.Period("2012-02"), pd.Period("2012-03")]

In [39]: ts = pd.Series(np.random.randn(3), periods)

In [40]: type(ts.index)
Out[40]: pandas.core.indexes.period.PeriodIndex In [41]: ts.index
Out[41]: PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]', freq='M') In [42]: ts
Out[42]:
2012-01 -1.135632
2012-02 1.212112
2012-03 -0.173215
Freq: M, dtype: float64

可以通过 pd.period_range 方法来创建 PeriodIndex:

In [359]: prng = pd.period_range("1/1/2011", "1/1/2012", freq="M")

In [360]: prng
Out[360]:
PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06',
'2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12',
'2012-01'],
dtype='period[M]', freq='M')

还可以通过PeriodIndex直接创建:

In [361]: pd.PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
Out[361]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')

DateOffset

DateOffset表示的是频率对象。它和Timedelta很类似,表示的是一个持续时间,但是有特殊的日历规则。比如Timedelta一天肯定是24小时,而在 DateOffset中根据夏令时的不同,一天可能会有23,24或者25小时。

# This particular day contains a day light savings time transition
In [144]: ts = pd.Timestamp("2016-10-30 00:00:00", tz="Europe/Helsinki") # Respects absolute time
In [145]: ts + pd.Timedelta(days=1)
Out[145]: Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki') # Respects calendar time
In [146]: ts + pd.DateOffset(days=1)
Out[146]: Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki') In [147]: friday = pd.Timestamp("2018-01-05") In [148]: friday.day_name()
Out[148]: 'Friday' # Add 2 business days (Friday --> Tuesday)
In [149]: two_business_days = 2 * pd.offsets.BDay() In [150]: two_business_days.apply(friday)
Out[150]: Timestamp('2018-01-09 00:00:00') In [151]: friday + two_business_days
Out[151]: Timestamp('2018-01-09 00:00:00') In [152]: (friday + two_business_days).day_name()
Out[152]: 'Tuesday'

DateOffsets 和Frequency 运算是先关的,看一下可用的Date Offset 和它相关联的 Frequency

Date Offset Frequency String 描述
DateOffset None 通用的offset 类
BDay or BusinessDay 'B' 工作日
CDay or CustomBusinessDay 'C' 自定义的工作日
Week 'W' 一周
WeekOfMonth 'WOM' 每个月的第几周的第几天
LastWeekOfMonth 'LWOM' 每个月最后一周的第几天
MonthEnd 'M' 日历月末
MonthBegin 'MS' 日历月初
BMonthEnd or BusinessMonthEnd 'BM' 营业月底
BMonthBegin or BusinessMonthBegin 'BMS' 营业月初
CBMonthEnd or CustomBusinessMonthEnd 'CBM' 自定义营业月底
CBMonthBegin or CustomBusinessMonthBegin 'CBMS' 自定义营业月初
SemiMonthEnd 'SM' 日历月末的第15天
SemiMonthBegin 'SMS' 日历月初的第15天
QuarterEnd 'Q' 日历季末
QuarterBegin 'QS' 日历季初
BQuarterEnd 'BQ 工作季末
BQuarterBegin 'BQS' 工作季初
FY5253Quarter 'REQ' 零售季( 52-53 week)
YearEnd 'A' 日历年末
YearBegin 'AS' or 'BYS' 日历年初
BYearEnd 'BA' 营业年末
BYearBegin 'BAS' 营业年初
FY5253 'RE' 零售年 (aka 52-53 week)
Easter None 复活节假期
BusinessHour 'BH' business hour
CustomBusinessHour 'CBH' custom business hour
Day 'D' 一天的绝对时间
Hour 'H' 一小时
Minute 'T' or 'min' 一分钟
Second 'S' 一秒钟
Milli 'L' or 'ms' 一微妙
Micro 'U' or 'us' 一毫秒
Nano 'N' 一纳秒

DateOffset还有两个方法 rollforward()rollback() 可以将时间进行移动:

In [153]: ts = pd.Timestamp("2018-01-06 00:00:00")

In [154]: ts.day_name()
Out[154]: 'Saturday' # BusinessHour's valid offset dates are Monday through Friday
In [155]: offset = pd.offsets.BusinessHour(start="09:00") # Bring the date to the closest offset date (Monday)
In [156]: offset.rollforward(ts)
Out[156]: Timestamp('2018-01-08 09:00:00') # Date is brought to the closest offset date first and then the hour is added
In [157]: ts + offset
Out[157]: Timestamp('2018-01-08 10:00:00')

上面的操作会自动保存小时,分钟等信息,如果想要设置为 00:00:00 , 可以调用normalize() 方法:

In [158]: ts = pd.Timestamp("2014-01-01 09:00")

In [159]: day = pd.offsets.Day()

In [160]: day.apply(ts)
Out[160]: Timestamp('2014-01-02 09:00:00') In [161]: day.apply(ts).normalize()
Out[161]: Timestamp('2014-01-02 00:00:00') In [162]: ts = pd.Timestamp("2014-01-01 22:00") In [163]: hour = pd.offsets.Hour() In [164]: hour.apply(ts)
Out[164]: Timestamp('2014-01-01 23:00:00') In [165]: hour.apply(ts).normalize()
Out[165]: Timestamp('2014-01-01 00:00:00') In [166]: hour.apply(pd.Timestamp("2014-01-01 23:30")).normalize()
Out[166]: Timestamp('2014-01-02 00:00:00')

作为index

时间可以作为index,并且作为index的时候会有一些很方便的特性。

可以直接使用时间来获取相应的数据:

In [99]: ts["1/31/2011"]
Out[99]: 0.11920871129693428 In [100]: ts[datetime.datetime(2011, 12, 25):]
Out[100]:
2011-12-30 0.56702
Freq: BM, dtype: float64 In [101]: ts["10/31/2011":"12/31/2011"]
Out[101]:
2011-10-31 0.271860
2011-11-30 -0.424972
2011-12-30 0.567020
Freq: BM, dtype: float64

获取全年的数据:

In [102]: ts["2011"]
Out[102]:
2011-01-31 0.119209
2011-02-28 -1.044236
2011-03-31 -0.861849
2011-04-29 -2.104569
2011-05-31 -0.494929
2011-06-30 1.071804
2011-07-29 0.721555
2011-08-31 -0.706771
2011-09-30 -1.039575
2011-10-31 0.271860
2011-11-30 -0.424972
2011-12-30 0.567020
Freq: BM, dtype: float64

获取某个月的数据:

In [103]: ts["2011-6"]
Out[103]:
2011-06-30 1.071804
Freq: BM, dtype: float64

DF可以接受时间作为loc的参数:

In [105]: dft
Out[105]:
A
2013-01-01 00:00:00 0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00 0.113648
2013-01-01 00:04:00 -1.478427
... ...
2013-03-11 10:35:00 -0.747967
2013-03-11 10:36:00 -0.034523
2013-03-11 10:37:00 -0.201754
2013-03-11 10:38:00 -1.509067
2013-03-11 10:39:00 -1.693043 [100000 rows x 1 columns] In [106]: dft.loc["2013"]
Out[106]:
A
2013-01-01 00:00:00 0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00 0.113648
2013-01-01 00:04:00 -1.478427
... ...
2013-03-11 10:35:00 -0.747967
2013-03-11 10:36:00 -0.034523
2013-03-11 10:37:00 -0.201754
2013-03-11 10:38:00 -1.509067
2013-03-11 10:39:00 -1.693043 [100000 rows x 1 columns]

时间切片:

In [107]: dft["2013-1":"2013-2"]
Out[107]:
A
2013-01-01 00:00:00 0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00 0.113648
2013-01-01 00:04:00 -1.478427
... ...
2013-02-28 23:55:00 0.850929
2013-02-28 23:56:00 0.976712
2013-02-28 23:57:00 -2.693884
2013-02-28 23:58:00 -1.575535
2013-02-28 23:59:00 -1.573517 [84960 rows x 1 columns]

切片和完全匹配

考虑下面的一个精度为分的Series对象:

In [120]: series_minute = pd.Series(
.....: [1, 2, 3],
.....: pd.DatetimeIndex(
.....: ["2011-12-31 23:59:00", "2012-01-01 00:00:00", "2012-01-01 00:02:00"]
.....: ),
.....: )
.....: In [121]: series_minute.index.resolution
Out[121]: 'minute'

时间精度小于分的话,返回的是一个Series对象:

In [122]: series_minute["2011-12-31 23"]
Out[122]:
2011-12-31 23:59:00 1
dtype: int64

时间精度大于分的话,返回的是一个常量:

In [123]: series_minute["2011-12-31 23:59"]
Out[123]: 1 In [124]: series_minute["2011-12-31 23:59:00"]
Out[124]: 1

同样的,如果精度为秒的话,小于秒会返回一个对象,等于秒会返回常量值。

时间序列的操作

Shifting

使用shift方法可以让 time series 进行相应的移动:

In [275]: ts = pd.Series(range(len(rng)), index=rng)

In [276]: ts = ts[:5]

In [277]: ts.shift(1)
Out[277]:
2012-01-01 NaN
2012-01-02 0.0
2012-01-03 1.0
Freq: D, dtype: float64

通过指定 freq , 可以设置shift的方式:

In [278]: ts.shift(5, freq="D")
Out[278]:
2012-01-06 0
2012-01-07 1
2012-01-08 2
Freq: D, dtype: int64 In [279]: ts.shift(5, freq=pd.offsets.BDay())
Out[279]:
2012-01-06 0
2012-01-09 1
2012-01-10 2
dtype: int64 In [280]: ts.shift(5, freq="BM")
Out[280]:
2012-05-31 0
2012-05-31 1
2012-05-31 2
dtype: int64

频率转换

时间序列可以通过调用 asfreq 的方法转换其频率:

In [281]: dr = pd.date_range("1/1/2010", periods=3, freq=3 * pd.offsets.BDay())

In [282]: ts = pd.Series(np.random.randn(3), index=dr)

In [283]: ts
Out[283]:
2010-01-01 1.494522
2010-01-06 -0.778425
2010-01-11 -0.253355
Freq: 3B, dtype: float64 In [284]: ts.asfreq(pd.offsets.BDay())
Out[284]:
2010-01-01 1.494522
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 -0.778425
2010-01-07 NaN
2010-01-08 NaN
2010-01-11 -0.253355
Freq: B, dtype: float64

asfreq还可以指定修改频率过后的填充方法:

In [285]: ts.asfreq(pd.offsets.BDay(), method="pad")
Out[285]:
2010-01-01 1.494522
2010-01-04 1.494522
2010-01-05 1.494522
2010-01-06 -0.778425
2010-01-07 -0.778425
2010-01-08 -0.778425
2010-01-11 -0.253355
Freq: B, dtype: float64

Resampling 重新取样

给定的时间序列可以通过调用resample方法来重新取样:

In [286]: rng = pd.date_range("1/1/2012", periods=100, freq="S")

In [287]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [288]: ts.resample("5Min").sum()
Out[288]:
2012-01-01 25103
Freq: 5T, dtype: int64

resample 可以接受各类统计方法,比如: sum, mean, std, sem, max, min, median, first, last, ohlc

In [289]: ts.resample("5Min").mean()
Out[289]:
2012-01-01 251.03
Freq: 5T, dtype: float64 In [290]: ts.resample("5Min").ohlc()
Out[290]:
open high low close
2012-01-01 308 460 9 205 In [291]: ts.resample("5Min").max()
Out[291]:
2012-01-01 460
Freq: 5T, dtype: int64

本文已收录于 http://www.flydean.com/15-python-pandas-time/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

Pandas高级教程之:时间处理的更多相关文章

  1. Pandas高级教程之:GroupBy用法

    Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...

  2. Pandas高级教程之:处理缺失数据

    目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值 ...

  3. Pandas高级教程之:plot画图详解

    目录 简介 基础画图 其他图像 bar stacked bar barh Histograms box Area Scatter Hexagonal bin Pie 在画图中处理NaN数据 其他作图工 ...

  4. Pandas高级教程之:window操作

    目录 简介 滚动窗口 Center window Weighted window 加权窗口 扩展窗口 指数加权窗口 简介 在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window ...

  5. Pandas高级教程之:Dataframe的合并

    目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...

  6. Pandas高级教程之:处理text数据

    目录 简介 创建text的DF String 的方法 columns的String操作 分割和替换String String的连接 使用 .str来index extract extractall c ...

  7. Pandas高级教程之:category数据类型

    目录 简介 创建category 使用Series创建 使用DF创建 创建控制 转换为原始类型 categories的操作 获取category的属性 重命名categories 使用add_cate ...

  8. Pandas高级教程之:统计方法

    目录 简介 变动百分百 Covariance协方差 Correlation相关系数 rank等级 简介 数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法. 变动百分百 ...

  9. Pandas高级教程之:稀疏数据结构

    目录 简介 Spare data的例子 SparseArray SparseDtype Sparse的属性 Sparse的计算 SparseSeries 和 SparseDataFrame 简介 如果 ...

随机推荐

  1. SpringBoot笔记(1)

    一.Spring能做什么 微服务 响应式开发 分布式云开发 web开发 无服务开发(云) 批处理业务等 二.SpringBoot作用 能快速创建出生产级别的Spring应用 SpringBoot是整合 ...

  2. 为开源项目 go-gin-api 增加后台任务模块

    目录 任务管理界面 (WEB) 任务调度器 任务执行器 小结 推荐阅读 任务管理界面 (WEB) 支持在 WEB 界面 中对任务进行管理,例如:新增任务.编辑任务.启用/禁用任务.手动执行任务 等. ...

  3. 什么是云效持续集成?如何关联Jenkins进行持续集成?

    什么是云效持续集成?如何关联Jenkins进行持续集成?云效流水线 Flow是一款企业级.自动化的研发交付流水线, 提供灵活易用的持续集成.持续验证. 持续发布功能,帮助企业高质量.高效率的交付业务. ...

  4. IDEA中mybatis generator使用

    1.在对应服务的pom.xml文件中添加依赖 <build> <plugins> <plugin> <groupId>org.mybatis.gener ...

  5. Salesforce LWC学习(三十六) Quick Action 支持选择 LWC了

    本篇参考: https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_quick_act ...

  6. AWS EC2 实例 SSH 无法登录故障

    文章链接 故障表现 在使用 jumperver 登录 AWS ec2 实例的时候发现 ssh 配合秘钥登录的时候无法登录, 具体报错如下: ssh -i /path/xx.pem user@10.0. ...

  7. 前端搭建Linux云服务器,Nginx配置详解及部署自己项目到服务器上

    目录 搭建Linux云服务器 购买与基本配置 链接linux服务器 目录结构 基本命令 软件安装 Linux 系统启动 启动过程 运行级别 Nginx详解 1.安装 方式一:yum安装 方式二:自定义 ...

  8. Linux新加磁盘并挂载到目录

    步骤:1.分区  ----> 2.格式化  ----> 3.挂载 一.查看当前情况 1. 2. 二.磁盘分区 fdisk /dev/sdb 1.输入n,表示添加一个新的分区 2. e ex ...

  9. 痞子衡嵌入式:MCUXpresso IDE下将应用程序RW段分散链接的几种方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是MCUXpresso IDE下将应用程序RW段分散链接的几种方法. 早期的 MCU 芯片,一般都会嵌入内部 Flash 和 RAM,并且 ...

  10. JS003. 事件监听和监听滚动条的三种参数( addEventListener( ) )

    全局 1 window.addEventListener('scroll', () => { 2 console.log('------') 3 console.log(document.doc ...