当单线程性能不足时,我们通常会使用多线程/多进程去加速运行。而这些代码往往多得令人绝望,需要考虑:

  • 如何创建线程执行的函数?
  • 如何收集结果?若希望结果从子线程返回主线程,则还要使用队列
  • 如何取消执行? 直接kill掉所有线程?信号如何传递?
  • 是否需要线程池? 否则反复创建线程的成本过高了

不仅如此,若改为多进程或协程,代码还要继续修改。若多处使用并行,则这些代码还会重复很多遍,非常痛苦。

于是,我们考虑将并行的所有逻辑封装到一个模块之内,向外部提供像串行执行一样的编程体验,还能彻底解决上面所述的疑难问题。所有代码不足180行。

GitHub地址:

https://github.com/ferventdesert/multi_yielder

使用时非常简洁:

def xprint(x):
time.sleep(1) # mock a long time task
yield x*x
i=0
for item in multi_yield(xrange(100)),xprint, process_mode,3:
i+=1
print(item)
if i>10:
break

上面的代码会使用三个进程,并行地打印1-10的平方。当打印完10之后,进程自动回收释放。就像串行程序一样简单。

1. 先实现串行任务

我们通常会将任务分割为很多个子块,从而方便并行。因此可以将任务抽象为生成器。类似下面的操作,每个seed都是任务的种子。

def get_generator():
for seed in 100:
yield seed

任务本身的定义,则可以通过一个接受种子的函数来实现:

def worker(seed):
# some long time task
return seed*seed # just example

那么实现串行任务就像这样:

for seed in get_generator(n):
print worker(seed)

进一步地,可以将其抽象为下面的函数:

def serial_yield(genenator,worker):
for seed in generator():
yield worker(seed)

该函数通过传入生成器函数(generator)和任务的定义(worker函数),即可再返回一个生成器。消费时:

for result in serial_yield(your_genenator, your_worker):
print(result)

我们看到,通过定义高阶函数,serial_yield就像map函数,对seed进行加工后输出。

2. 定义并行任务

考虑如下场景: boss负责分发任务到任务队列,多个worker从任务队列捞数据,处理完之后,再写入结果队列。主线程从结果队列中取结果即可。

我们定义如下几种执行模式:

  • async: 异步/多协程
  • thread: 多线程
  • process: 多进程

使用Python创建worker的代码如下,func是任务的定义(是个函数)

    def factory(func, args=None, name='task'):
if args is None:
args = ()
if mode == process_mode:
return multiprocessing.Process(name=name, target=func, args=args)
if mode == thread_mode:
import threading
t = threading.Thread(name=name, target=func, args=args)
t.daemon = True
return t
if mode == async_mode:
import gevent
return gevent.spawn(func, *args)

创建队列的代码如下,注意seeds可能是无穷流,因此需要限定队列的长度,当入队列发现队列已满时,则任务需要阻塞。

  def queue_factory(size):
if mode == process_mode:
return multiprocessing.Queue(size)
elif mode == thread_mode:
return Queue(size)
elif mode == async_mode:
from gevent import queue
return queue.Queue(size)

什么时候任务可以终止? 我们罗列如下几种情况:

  • 所有的seed都已经被消费完了
  • 外部传入了结束请求

对第一种情况,我们让boss在seed消费完之后,在队列里放入多个Empty标志,worker收到Empty之后,就会自动退出,下面是boss的实现逻辑:

    def _boss(task_generator, task_queue, worker_count):
for task in task_generator:
task_queue.put(task)
for i in range(worker_count):
task_queue.put(Empty)
print('worker boss finished')

再定义worker的逻辑:

    def _worker(task_queue, result_queue, gene_func):
import time
try:
while not stop_wrapper.is_stop():
if task_queue.empty():
time.sleep(0.01)
continue
task = task.get()
if task == Empty:
result_queue.put(Empty)
break
if task == Stop:
break
for item in gene_func(task):
result_queue.put(item)
print ('worker worker is stop')
except Exception as e:
logging.exception(e)
print ('worker exception, quit')

简单吧?但是这样会有问题,这个后面再说,我们把剩余的代码写完。

再定义multi_yield的主要代码。 代码非常好理解,创建任务和结果队列,再创建boss和worker线程(或进程/协程)并启动,之后不停地从结果队列里取数据就可以了。

 def multi_yield(customer_func, mode=thread_mode, worker_count=1, generator=None, queue_size=10):
workers = []
result_queue = queue_factory(queue_size)
task_queue = queue_factory(queue_size) main = factory(_boss, args=(generator, task_queue, worker_count), name='_boss')
for process_id in range(0, worker_count):
name = 'worker_%s' % (process_id)
p = factory(_worker, args=(task_queue, result_queue, customer_func), name=name)
workers.append(p)
main.start() for r in workers:
r.start()
count = 0
while not should_stop():
data = result_queue.get()
if data is Empty:
count += 1
if count == worker_count:
break
continue
if data is Stop:
break
else:
yield data

这样从外部消费时,即可:

def xprint(x):
time.sleep(1)
yield x i=0
for item in multi_yield(xprint, process_mode,3,xrange(100)):
i+=1
print(item)
if i>10:
break

这样我们就实现了一个与serial_yield功能类似的multi_yield。可以定义多个worker,从队列中领任务,而不需重复地创建和销毁,更不需要线程池。当然,代码不完全,运行时可能出问题。但以上代码已经说明了核心的功能。完整的代码可以在文末找到。

但是你也会发现很严重的问题:

  • 当从外部break时,内部的线程并不会自动停止
  • 我们无法判断队列的长度,若队列满,那么put操作会永远卡死在那里,任务都不会结束。

3. 改进任务停止逻辑

最开始想到的,是通过在multi_yield函数参数中添加一个返回bool的函数,这样当外部break时,同时将该函数的返回值置为True,内部检测到该标志位后强制退出。伪代码如下:

_stop=False
def can_stop():
return _stop for item in multi_yield(xprint, process_mode,3,xrange(100),can_stop):
i+=1
print(item)
if i>10:
_stop=True
break

但这样并不优雅,引入了更多的函数作为参数,还必须手工控制变量值,非常繁琐。在多进程模式下,stop标志位还如何解决?

我们希望外部在循环时执行了break后,会自动通知内部的生成器。实现方法似乎就是with语句,即contextmanager.

我们实现以下的包装类:

class Yielder(object):
def __init__(self, dispose):
self.dispose = dispose def __enter__(self):
pass def __exit__(self, exc_type, exc_val, exc_tb):
self.dispose()

它实现了with的原语,参数是dispose函数,作用是退出with代码块后的回收逻辑。

由于值类型的标志位无法在多进程环境中传递,我们再创建StopWrapper类,用于管理停止标志和回收资源:

   class Stop_Wrapper():
def __init__(self):
self.stop_flag = False
self.workers=[] def is_stop(self):
return self.stop_flag def stop(self):
self.stop_flag = True
for process in self.workers:
if isinstance(process,multiprocessing.Process):
process.terminate()

最后的问题是,如何解决队列满或空时,put/get的无限等待问题呢?考虑包装一下put/get:包装在while True之中,每隔两秒get/put,这样即使阻塞时,也能保证可以检查退出标志位。所有线程在主线程结束后,最迟也能在2s内自动退出。

def safe_queue_get(queue, is_stop_func=None, timeout=2):
while True:
if is_stop_func is not None and is_stop_func():
return Stop
try:
data = queue.get(timeout=timeout)
return data
except:
continue def safe_queue_put(queue, item, is_stop_func=None, timeout=2):
while True:
if is_stop_func is not None and is_stop_func():
return Stop
try:
queue.put(item, timeout=timeout)
return item
except:
continue

如何使用呢?我们只需在multi_yield的yield语句之外加上一行就可以了:

    with Yielder(stop_wrapper.stop):
# create queue,boss,worker, then start all
# ignore repeat code
while not should_stop():
data = safe_queue_get(result_queue, should_stop)
if data is Empty:
count += 1
if count == worker_count:
break
continue
if data is Stop:
break
else:
yield data

仔细阅读上面的代码, 外部循环时退出循环,则会自动触发stop_wrapper的stop操作,回收全部资源,而不需通过外部的标志位传递!这样调用方在心智完全不需有额外的负担。

实现生成器和上下文管理器的编程语言,都可以通过上述方式实现自动协程资源回收。笔者也实现了一个C#版本的,有兴趣欢迎交流。

这样,我们就能像文章开头那样,实现并行的迭代器操作了。

4. 结语

完整代码在:

https://github.com/ferventdesert/multi_yielder/blob/master/src/multi_yielder.py

一些实现的细节很有趣,我们借助在函数中定义函数,可以不用复杂的类去承担职责,而仅仅只需函数。而类似的思想,在函数式编程中非常常见。

该工具已经被笔者的流式语言etlpy所集成。但是依然有较多改进的空间,如没有集成分布式执行模式。

欢迎留言交流。

如何优雅地实现Python通用多线程/进程并行模块的更多相关文章

  1. Python之多线程:Threading模块

    1.Threading模块提供的类 Thread,Lock,Rlock,Condition,Semaphore,Event,Timer,local 2.threading模块提供的常用的方法 (1)t ...

  2. 优雅地记录Python程序日志2:模块组件化日志记录器

    本文摘自:https://zhuanlan.zhihu.com/p/32043593 本篇将会涉及: logging的各个模块化组件 构建一个组件化的日志器 logging的模块组件化 在上一篇文章中 ...

  3. Python 多线程进程高级指南(二)

    本文是如何<优雅地实现Python通用多线程/进程并行模块>的后续.因为我发现,自认为懂了一点多线程开发的皮毛,写了那么个multi_helper的玩意儿,后来才发现我靠原来就是一坨屎.自 ...

  4. 【转】使用python进行多线程编程

    1. python对多线程的支持 1)虚拟机层面 Python虚拟机使用GIL(Global Interpreter Lock,全局解释器锁)来互斥线程对共享资源的访问,暂时无法利用多处理器的优势.使 ...

  5. Python多线程&进程

    一.线程&进程 对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程, ...

  6. Python 浅析线程(threading模块)和进程(process)

    线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务 进程与线程 什么 ...

  7. Python的多线程和多进程

    (1)多线程的产生并不是因为发明了多核CPU甚至现在有多个CPU+多核的硬件,也不是因为多线程CPU运行效率比单线程高.单从CPU的运行效率上考虑,单任务进程及单线程效率是最高的,因为CPU没有任何进 ...

  8. python 异常处理、进程

    目录: 异常处理 python进程 python并发之多进程 一.异常处理(try...except...) 1.程序中难免出现错误,而错误分成两种: a.语法错误: b.逻辑错误(逻辑错误) 2.异 ...

  9. Python 中的进程与 锁

    理论知识 操作系统背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操 ...

随机推荐

  1. RPC框架原理与实现

    了解一个框架最好的思路就是寻找一个该类型麻雀虽小五脏俱全的开源项目,不负所期,轻量级分布式 RPC 框架 RPC,全称 Remote Procedure Call(远程过程调用),即调用远程计算机上的 ...

  2. Java NIO之通道

    一.前言 前面学习了缓冲区的相关知识点,接下来学习通道. 二.通道 2.1 层次结构图 对于通道的类层次结构如下图所示. 其中,Channel是所有类的父类,其定义了通道的基本操作.从 Channel ...

  3. Spring+IOC(DI)+AOP概念及优缺点

    Spring pring是一个轻量级的DI和AOP容器框架. 说它轻量级有一大部分原因是相对与EJB的(虽然本人从没有接触过EJB的应用),重要的是,Spring是非侵入式的,基于spring开发的应 ...

  4. 使用vs2015搭建Asp.net Core

    准备工具    1.首先得安装vs2015 并且升级至 update3及以上  2.安装.net core sdk.附上官网下载地址 http://www.microsoft.com/net/down ...

  5. T-SQL编程语句

    书接上回 一起学习下SQL中的表连接 一般情况下咱们会使用鼠标去进行表连接操作,那针对于像我比较懒的并且眼盲的,不喜欢来回切换,咱们就用到了点T-SQL表连接语句 一般情况咱们从两个表中查出来相似的内 ...

  6. C# 类型转换is和as 以及性能陷阱

       1.在C#2.0之前,as只能用于引用类型.而在C#2.0之后,它也可以用于可空类型.其结果为可空类型的某个值---空值或者一个有意义的值.示例: static void Main(string ...

  7. eclipse中AndroidA工程依赖B工程设置

    假设library为B工程,而SlideMenuTest为A工程,且SlideMenuTest需要依赖library工程(减少jar包形式的修改麻烦). 需要简单的设置即可. 1.B工程设置为libr ...

  8. PHP 学习笔记(2)

    <?php$foo = "0";  // $foo 是字符串 (ASCII 48)$foo += 2;   // $foo 现在是一个整数 (2)$foo = $foo +  ...

  9. MySQL安装、输入密码闪退、workbench使用

    1.安装 安装就不细说了,网上一搜一大堆,但是教程推荐这个: wikihow 网站是wikiHOW,很有意思的网站,比百度经验强大很多. 2.输入密码闪退 安装完成后,在开始菜单,打开 开始程序 界面 ...

  10. c#常用方法和类

    1.  数据类型转换函数 Convert.ToXXX(); XXX.Parse(); XXX.TryParse(); 2. 日期相关的类与函数 获取系统当前日期(含时间):DateTime.Now 获 ...