POJ 1637 Sightseeing tour
Sightseeing tour
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 9276 | Accepted: 3924 |
Description
Input
Output
Sample Input
4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0
Sample Output
possible
impossible
impossible
possible
Source
题意:
给出一张混合图,询问这张图是否存在欧拉回路(经过每条边一次且仅一次)...
分析:
如果一个有向图存在欧拉回路满足的条件是所有的点in[i]==out[i],所以我们可以先给无向边定向,然后记录每个点的入度和出度,如果存在某一个点的入度和出度差值为奇数,那么这张图一定不存在欧拉回路,因为我们如果要找欧拉回路一定是通过反向无向边来使得每个点的入度等于出度,而每反向一条边,它所连接的两个点的入度和出度差值都改变了2...
那么对于一个入度不等于出度的点,我们需要把和它相邻的abs(in[i]-out[i])/2条边反向,所以对于一个in[i]>out[i]的点我们从i向T连一条容量为(in[i]-out[i])/2的边,对于一个out[i]>in[i]的点我们从S向i连一条容量为(out[i]-in[i])/2的边,然后我们把对于每个无向边,按照初始的定向连边,有向边删去(因为有向边是不能反向的)...如果可以满流就代表当前图满足要求...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
//by NeighThorn
#define inf 0x3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cas,cnt,sum,flag,hd[maxn],fl[maxm],to[maxm],in[maxn],out[maxn],nxt[maxm],pos[maxn]; inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(f-res,fl[i])),res+=t,fl[i]-=t,fl[i^]+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} signed main(void){
// freopen("in.txt","r",stdin);
scanf("%d",&cas);
while(cas--){
flag=cnt=sum=;
scanf("%d%d",&n,&m);
memset(in,,sizeof(in));
memset(hd,-,sizeof(hd));
memset(out,,sizeof(out));
for(int i=,s,x,y;i<=m;i++){
scanf("%d%d%d",&x,&y,&s);
if(s==)
add(,x,y);
in[y]++,out[x]++;
}S=,T=n+;
for(int i=;i<=n&&!flag;i++){
if(abs(in[i]-out[i])&)
flag=;
else if(in[i]>out[i])
add((in[i]-out[i])>>,i,T);
else if(out[i]>in[i])
add((out[i]-in[i])>>,S,i),sum+=(out[i]-in[i])>>;
}
if(flag){
puts("impossible");continue;
}
if(dinic()==sum)
puts("possible");
else
puts("impossible");
}
return ;
}
By NeighThorn
POJ 1637 Sightseeing tour的更多相关文章
- POJ 1637 Sightseeing tour(最大流)
POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- POJ 1637 Sightseeing tour (混合图欧拉回路)
Sightseeing tour Description The city executive board in Lund wants to construct a sightseeing tou ...
- 网络流(最大流) POJ 1637 Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8628 Accepted: 3636 ...
- POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6448 Accepted: 2654 ...
- POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...
- poj 1637 Sightseeing tour——最大流+欧拉回路
题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...
- poj 1637 Sightseeing tour —— 最大流+欧拉回路
题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一 ...
随机推荐
- 代码的坏味道(5)——数据泥团(Data Clumps)
坏味道--数据泥团(Data Clumps) 特征 有时,代码的不同部分包含相同的变量组(例如用于连接到数据库的参数).这些绑在一起出现的数据应该拥有自己的对象. 问题原因 通常,数据泥团的出现时因为 ...
- DataAccess通用数据库访问类,简单易用,功能强悍
以下是我编写的DataAccess通用数据库访问类,简单易用,支持:内联式创建多个参数.支持多事务提交.支持参数复用.支持更换数据库类型,希望能帮到大家,若需支持查出来后转换成实体,可以自行扩展dat ...
- 从架构层面谈web加载优化(个人整理)
最近听了阿里一位大牛的讲座,讲web架构优化对网页加载的影响,看完之后对他所讲的一些优化方法进行一些总结和整理,发现收获还是蛮多的,下面多为个人整理和个人见解,希望有说的不对的,能及时指出 1.DNS ...
- zeroclipboard浏览器复制插件使用记录
一个简单例子: <html> <body> <button id="copy-button" data-clipboard-text="Co ...
- 使用图片视频展示插件blueimp Gallery改造网站的视频图片展示
在很多情况下,我们网站可能会展示我们的产品图片.以及教程视频等内容,结合一个比较好的图片.视频展示插件,能够使得我们的站点更加方便使用,也更加酷炫,在Github上有很多相关的处理插件可以找来使用,有 ...
- 分享一个单点登录、OAuth2.0授权系统源码(SimpleSSO)
SimpleSSO 关于OAuth 2.0介绍: http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html 系统效果: 登录界面: 首页: 应用界面: ...
- BroadcastReceiver几种常见监听
1.BroadcastReceiver监听拨号 <intent-filter android:priority="1000" > <action android: ...
- springmvc的数据校验
springmvc的数据校验 在Web应用程序中,为了防止客户端传来的数据引发程序异常,常常需要对数据进行验证,输入验证分为客户端验证与服务器端验证. 客户端验证主要通过javaScript脚本 ...
- elasticsearch高级配置一 ---- 分片分布规则设置
cluster.routing.allocation.allow_rebalance 设置根据集群中机器的状态来重新分配分片,可以设置为always, indices_primaries_active ...
- 设计模式之单例模式的简单demo
/* * 设计模式之单例模式的简单demo */ class Single { /* * 创建一个本类对象. * 和get/set方法思想一样,类不能直接调用对象 * 所以用private限制权限 * ...