[NOI2006] 最大获利

★★★☆   输入文件:profit.in   输出文件:profit.out   简单对比
时间限制:2 s   内存限制:512 MB

【问题描述】

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU 集团旗下的CS&T 通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。 
    在前期市场调查和站址勘测之后,公司得到了一共N 个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。 
    另外公司调查得出了所有期望中的用户群,一共M 个。关于第i 个用户群的信息概括为Ai, Bi 和Ci:这些用户会使用中转站Ai 和中转站Bi 进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) 
THU 集团的CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)

【输入文件】

输入文件中第一行有两个正整数N 和M 。 
第二行中有N 个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。 
以下M 行,第(i + 2)行的三个数Ai, Bi 和Ci 描述第i 个用户群的信息。 
所有变量的含义可以参见题目描述。

【输出文件】

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

【样例输入】

profit.in

5 5 
1 2 3 4 5 
1 2 3 
2 3 4 
1 3 3 
1 4 2 
4 5 3

【样例输出】

profit.out

4

【样例说明】

选择建立1、2、3 号中转站,则需要投入成本6,获利为10,因此得到最大收益4。

【评分方法】

本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。

【数据规模和约定】

80%的数据中:N≤200,M≤1 000。 
100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

【题解】:

【总结做法】:

#include<cstdio>
#include<iostream>
#define FRE(name) freopen(#name".in","r",stdin);freopen(#name".out","w",stdout);
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=1e5+;
const int inf=0x3f3f3f3f;
int n,m,S,T,total,head[N],dis[N],q[N*];
struct node{
int v,next,cap;
}e[N<<];int tot=;
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].next=head[y];head[y]=tot;
}
inline void mapping(){
n=read();m=read();S=;T=n+m+;
for(int i=,x;i<=n;i++) x=read(),add(i+m,T,x);
for(int i=,a,b,c;i<=m;i++){
a=read();b=read();c=read();total+=c;
add(S,i,c);
add(i,a+m,inf);
add(i,b+m,inf);
}
}
bool bfs(){
for(int i=S;i<=T;i++) dis[i]=-;
int h=,t=;q[t]=S;dis[S]=;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==-){
dis[e[i].v]=dis[x]+;
if(e[i].v==T) return ;
q[++t]=e[i].v;
}
}
}
}
int dfs(int x,int f){
if(x==T) return f;
int used=,t;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==dis[x]+){
t=dfs(e[i].v,min(e[i].cap,f));
e[i].cap-=t;e[i^].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=-;
return used;
}
inline void dinic(){
int res=;
while(bfs()) res+=dfs(S,inf);
printf("%d",total-res);
}
int main(){
FRE(profit);
mapping();
dinic();
return ;
}

[NOI2006] 最大获利的更多相关文章

  1. BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4375  Solved: 2142[Submit][Status] ...

  2. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  3. 网络流(最大流):COGS 28 [NOI2006] 最大获利

    28. [NOI2006] 最大获利 ★★★☆   输入文件:profit.in   输出文件:profit.out   简单对比 时间限制:2 s   内存限制:512 MB [问题描述] 新的技术 ...

  4. BZOJ 1497: [NOI2006]最大获利( 最大流 )

    下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...

  5. BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...

  6. P4174 [NOI2006]最大获利(网络流)

    P4174 [NOI2006]最大获利 还是最大权闭合子图的题 对于每个中转站$k$:$link(k,T,P_k)$ 对于每个用户$i$.中转站$A_i,B_i$.贡献$C_i$ $link(S,i, ...

  7. 洛谷 P4174 [NOI2006]最大获利 解题报告

    P4174 [NOI2006]最大获利 题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要 ...

  8. BZOJ 1497 [NOI2006]最大获利

    1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...

  9. 【bzoj1479】[NOI2006]最大获利

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4335  Solved: 2123[Submit][Status] ...

随机推荐

  1. 基于tiny4412的Linux内核移植 ---- 調試方法

    作者信息 彭東林 郵箱: pengdonglin137@163.com 平臺 Linux-4.4.4 uboot使用的是友善自帶的(爲了支持uImage和設備樹做了稍許修改) 概述 這篇博客主要用於匯 ...

  2. 纯WebApi,不包含MVC Demo

    1.创建项目 只是单纯的使用Web API的功能,而不需要使用的MVC,这个时候就该抛开MVC来新建项目了. 首先,新建一个Asp.Net空应用程序,在程序集中添加引用System.Web.Http和 ...

  3. .net程序部署(setupFactory进阶)

    接上一篇 继续使用上一篇的project .将archive里无用的文件删除 添加我们需要的文件进来. config是一个文本文件. 注意所有文件的 destination都是 %appfolder% ...

  4. Angular2中对ASP.NET MVC跨域访问

    应用场景 项目开发决定使用angular2进行前后端分离开发,由我负责后端服务的开发,起初选择的是web api进行开发.对跨域访问通过API中间件+过滤器对跨域访问进行支持.开发一段后,通知需要移植 ...

  5. C#和Java中的Substring()

    吐槽-使用清理软件整理电脑要注意,不要清理的"太狠",不然你会受伤的! C#中的Substring() 示例 实现代码 using System;using System.Coll ...

  6. .Net Html如何上传图片到一般应用程序

    用html实现图片上传 后台采用.net其中在这里要借用一个js插件 在这里我会写一个图片上传的一个小Demo,有不全的地方多多包容,和提议, 我把已经写好的demo已经上传到百度云 在这里可以下载 ...

  7. Android ORM -- Litepal(2)

    4. 更新数据 ContentValues value = new ContentValues(); value.put("name", "计算机网络2"); ...

  8. FlashBuilder项目环境配置

    一 .安装Flash Builder 1.  修改host文件 1.1 找到host文件,复制到桌面修改. 在"C:\Windows\System32\drivers\etc"文件 ...

  9. angular的$filter服务

    首先,介绍下$filter服务: 1.$filter是用来进行数据格式化的专用服务: 2.AngularJS内置了currency.date.filter.json.limitTo.lowercase ...

  10. div 加载 html页面的方法

    做网页的单页面应用时,需要在一个HTML的Div元素中加载另一个HTML页面,以前有一种方法就是用iframe,举例如下: <div class="main-container&quo ...