51Nod 1084 矩阵取数问题 V2 双线程DP 滚动数组优化
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= A[i,j] <= 10000)
输出能够获得的最大价值。
3 3
1 3 3
2 1 3
2 2 1
17
思路:双线DP,看成两个人一起从(1,1)到(N,M),走的路径不能相同。
方法1:按照路径长度考虑,路径总长度:tot=x+y-1,dp[tot][x1][x2],两个人的横坐标x1,x2
#include <bits/stdc++.h>
using namespace std;
int ans[][],dp[][][];
int main() {
int M,N;
scanf("%d %d",&M,&N);
for(int i=;i<=N;++i)
for(int j=;j<=M;++j)
scanf("%d",&ans[i][j]);
memset(dp,,sizeof(dp));
for(int tot=;tot<=N+M-;++tot)//路径长度
for(int i=;i<=N&&(<=tot+-i);++i)
for(int j=;j<=N&&(<=tot+-j);++j) {
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j])+ans[i][tot+-i]+ans[j][tot+-j];
if(i==j) dp[tot][i][j]-=ans[i][tot+-i];
}
printf("%d\n",dp[N+M-][N][N]);
return ;
}
方法2:按照走到走了几步,总的步数:tot=x+y-2
#include <bits/stdc++.h>
using namespace std;
int ans[][],dp[][][];
int main() {
int M,N;
scanf("%d %d",&M,&N);
for(int i=;i<=N;++i)
for(int j=;j<=M;++j)
scanf("%d",&ans[i][j]);
memset(dp,,sizeof(dp));
dp[][][]=ans[][];//一步都没走
for(int tot=;tot<=N+M-;++tot)//走了几步
for(int i=;i<=N&&(i-<=tot);++i)
for(int j=;j<=N&&(j-<=tot);++j) {
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j])+ans[i][tot+-i]+ans[j][tot+-j];
if(i==j) dp[tot][i][j]-=ans[i][tot+-i];
}
printf("%d\n",dp[N+M-][N][N]);
return ;
}
方法3:对方法2的优化,滚动数组
#include <stdio.h>
#include <string.h>
int ans[][],dp[][][];
int max(int a, int b) {if(a>=b) return a;return b;}
int main() {
int M,N;
scanf("%d %d",&M,&N);
for(int i=;i<=N;++i)
for(int j=;j<=M;++j)
scanf("%d",&ans[i][j]);
memset(dp,,sizeof(dp));
dp[][][]=ans[][];//一步都没走
int dir=;
//tot->走了几步
for(int tot=;tot<=N+M-;++tot) {
dir=-dir;
for(int i=;i<=N&&(i-<=tot);++i)
for(int j=;j<=N&&(j-<=tot);++j) {
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i-][j-]);
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i-][j]);
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i][j-]);
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i][j])+ans[i][tot+-i]+ans[j][tot+-j];
if(i==j) dp[dir][i][j]-=ans[i][tot+-i];
}
}
printf("%d\n",dp[dir][N][N]);
return ;
}
51Nod 1084 矩阵取数问题 V2 双线程DP 滚动数组优化的更多相关文章
- 51Nod 1084 矩阵取数问题 V2 —— 最小费用最大流 or 多线程DP
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1084 1084 矩阵取数问题 V2 基准时间限制:2 秒 空 ...
- 1084 矩阵取数问题 V2
1084 矩阵取数问题 V2 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下 ...
- 51Nod 1084:矩阵取数问题 V2(多维DP)
1084 矩阵取数问题 V2 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...
- 51nod1084 矩阵取数问题 V2
O(n4)->O(n3)妈呀为什么跑这么慢woc #include<cstdio> #include<cstring> #include<cctype> #i ...
- 51Nod 1083 矩阵取数问题(矩阵取数dp,基础题)
1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下 ...
- [Swust OJ 1084]--Mzx0821月赛系列之情书(双线程dp)
题目链接:http://acm.swust.edu.cn/problem/1084/ Time limit(ms): 1000 Memory limit(kb): 65535 Descriptio ...
- 51nod 1411 矩阵取数问题 V3
给定一个m行n列的矩阵,你可以从任意位置开始取数,到达任意位置都可以结束,每次可以走到的数是当前这个数上下左右的邻居之一,唯一的限制是每个位置只能经过一次,也就是说你的路径不自交.所经过的数的总作为你 ...
- 51nod动态规划-----矩阵取数
一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值. 例如:3 * 3的方格. 1 3 3 2 1 3 2 2 1 能够获得的最 ...
- 51nod 1083 矩阵取数问题【动态规划】
一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值. 例如:3 * 3的方格. 1 3 3 2 1 3 2 2 1 能够获得的最 ...
随机推荐
- C++函数重载和函数模板(04)
函数重载 函数重载可以使一个函数名具有多种功能,即具有“多种形态”,这种特性称为多态性. C++的多态性又被直观地称为“一个名字,多个函数”.源代码只指明函数调用,而不说明具体调用哪个函数.编译器的这 ...
- CentOs 系统启动流程相关
CentOS的启动流程 1)加载BIOS 的硬件信息,获取第一个启动设备 2)读取第一个启动设备MBR 的引导加载程序(grub) 的启动信息 3)加载核心操作系统的核心信息,核心开始解压缩,并尝试驱 ...
- 找到python官方标准库文档
python中有很多标准库.我们没法记住全部标准库,但是可以在:https://docs.python.org/3/py-modindex.html 中查看标准库的索引 在python的官方文档中,如 ...
- Leetcode题解(五)
17.Letter Combinations of a Phone Number 题目 针对输入的数字串,每一个数字都对应对个字符可以选择.因此可以直接采用递归的思想,依次遍历数字串的每一个数字,处理 ...
- Mr. Frog’s Game
Mr. Frog’s Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- NFS存储服务部署
第1章 NFS介绍 1.1 NFS服务内容的概述 □ RPC服务知识概念介绍说明,以及RPC服务存在价值(必须理解掌握) □ NFS服务工作原理讲解(必须理解掌握) □ NFS共享文件系统使用原理讲解 ...
- Appium python自动化测试系列之日志的收集(十二)
13.1 日志的定义 13.1.1 日志的定义 听到日志这个东西可能有的人莫名其妙,第一次接触就会觉得我们为什么要收集日志,即使要收集日志那么我们需要收集哪些日志,日志的作用是什么等等. 其实日志无 ...
- SQL表连接查询(inner join(join)、full join、left join、right join、cross join)
下面列出了您可以使用的 JOIN 类型,以及它们之间的差异. JOIN: 如果表中有至少一个匹配,则返回行(join=inner join) LEFT JOIN: 即使右表中没有匹配,也从左表返回所有 ...
- JS5模拟类
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- js实现小球的弹性碰撞。
前 言 MYBG 小编最近在做自己的个人网站,其中就用到了一个小球碰撞检测的功能,想自己写,无奈本人能力不足啊(毕竟还是一个菜鸟)!!就想着找个插件用一下也好,可是找了好久也没有找到一个比较好用 ...