题目链接

题意 : 一个m面的骰子,掷n次,问得到最大值的期望。

思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)

p(xi)的是所有最大值是xi的情况数/总情况数一共是m^n种,掷n次,所有最大值是xi的情况数应该是xi^n,但是这里边却包含着最大值非xi且不超过xi的种数,所以再减去最大值是xi-1或者最大值不超过这个的情况数。即sum += xi * (xi^n-(xi-1)^n)/m^n,但是这样求肯定是不行,因为m n 的取值范围是10^5所以100000^100000会溢出,将这个公式的m^n提到括号里,即变成sum += xi*((xi/m)^n-((xi-1)/m)^n)。

 //C. Little Pony and Expected Maximum
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath> using namespace std ; int main()
{
double m , n ;
while(~scanf("%lf %lf",&m,&n))
{
double sum = 0.0;
for(int i = ; i <= m ; i++)
{
sum += (pow(i/m,n)-pow((i-)/m,n))*i ;
}
printf("%.12lf\n",sum) ;
}
return ;
}

Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)的更多相关文章

  1. Codeforces Round #259 (Div. 1) A. Little Pony and Expected Maximum 数学公式结论找规律水题

    A. Little Pony and Expected Maximum Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  2. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum

    题目链接 题意:一个m个面的骰子,抛掷n次,求这n次里最大值的期望是多少.(看样例就知道) 分析: m个面抛n次的总的情况是m^n, 开始m==1时,只有一种 现在增加m = 2,  则这些情况是新增 ...

  3. Codeforces Round #259 (Div. 2) D. Little Pony and Harmony Chest 状压DP

    D. Little Pony and Harmony Chest   Princess Twilight went to Celestia and Luna's old castle to resea ...

  4. Codeforces Round #259 (Div. 2)-D. Little Pony and Harmony Chest

    题目范围给的很小,所以有状压的方向. 我们是构造出一个数列,且数列中每两个数的最大公约数为1; 给的A[I]<=30,这是一个突破点. 可以发现B[I]中的数不会很大,要不然就不满足,所以B[I ...

  5. Codeforces Round #259 (Div. 2)

    A. Little Pony and Crystal Mine 水题,每行D的个数为1,3.......n-2,n,n-2,.....3,1,然后打印即可 #include <iostream& ...

  6. 【CF 453A】 A. Little Pony and Expected Maximum(期望、快速幂)

    A. Little Pony and Expected Maximum time limit per test 1 second memory limit per test 256 megabytes ...

  7. Codeforces Round #259 (Div. 2)AB

    链接:http://codeforces.com/contest/454/problem/A A. Little Pony and Crystal Mine time limit per test 1 ...

  8. Codeforces Round #259 (Div. 2) D

    D. Little Pony and Harmony Chest time limit per test 4 seconds memory limit per test 256 megabytes i ...

  9. Codeforces Round #259 (Div. 1)A(公式)

    传送门 题意 给出m个面的骰子扔n次,取最大值,求期望 分析 暴力算会有重复,而且复杂度不对. 考虑m个面扔n次得到m的概率,发现只要减去(m-1)个面扔n次得到m-1的概率即可,给出example说 ...

随机推荐

  1. poj 1985 Cow Marathon

    题目连接 http://poj.org/problem?id=1985 Cow Marathon Description After hearing about the epidemic of obe ...

  2. hdu 1023 Train Problem II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1212 Train Problem II Description As we all know the ...

  3. 如何让webapi只返回json格式数据

    最近脑子不好用,总记不住事,以前搞过让webapi只返回json格式的数据,今天有人问我又突然想不起了,后来总结一下,备忘一下,大概有下面几种处理方式 1.在WebApiConfig类的Registe ...

  4. 理解JavaScript中的事件路由冒泡过程及委托代理机制

    当我用纯CSS实现这个以后.我开始用JavaScript和样式类来完善功能. 然后,我有一些想法,我想使用Delegated Events (事件委托)但是我不想有任何依赖,插入任何库,包括jQuer ...

  5. < java.util >-- Iterator接口

    每一个集合都有自己的数据结构,都有特定的取出自己内部元素的方式.为了便于操作所有的容器,取出元素.将容器内部的取出方式按照一个统一的规则向外提供,这个规则就是Iterator接口. 也就说,只要通过该 ...

  6. HTML浅学入门---基础知识 (1)<基本规则>

    HTML: 结构化文档,超文本标记语言 (一)四条基本规则 1.每个开始标记必须和结束标记配套使用.// <tag>    </tag> 2.文档中必须包含唯一的打开和关闭标记 ...

  7. kernel nf_conntrack: table full, dropping packet[转载]

    http://blog.yorkgu.me/2012/02/09/kernel-nf_conntrack-table-full-dropping-packet/ 综合:ip_conntrack就是li ...

  8. GBDT(MART)

    转自:http://blog.csdn.net/w28971023/article/details/8240756 在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下: GBDT(Gra ...

  9. python-操作mssql数据库

    准备工作: cmd 命令行下安装pymssql: pip install pymssql 查询的数据库如下: 代码如下: #coding=utf-8 import pymssql class MSSQ ...

  10. selenium--嵌套frame定位

    网页源码: 案例1 :iframe有id.name属性 网页上有3个frame:header.menu.main,分别代码顶部.左侧.右侧(其中menu.main在另外一个frameset中) 如何定 ...