#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define N 44725
#define ll long long
using namespace std;
int tot,zhan[N+],mo[N+],mark[N+],T,n,ans;
bool pan(ll M)
{
int a1=sqrt(M),sum=;
for(int i=;i<=a1;i++)
sum+=mo[i]*(M/(i*i));
if(sum>=n)
return ;
return ;
}
int main()
{
scanf("%d",&T);
mo[]=;
for(int i=;i<=N;i++)
{
if(!mark[i])
{
zhan[++tot]=i;
mo[i]=-;
}
for(int j=;j<=tot&&i*zhan[j]<=N;j++)
{
mark[i*zhan[j]]=;
if(i%zhan[j])
mo[i*zhan[j]]=-mo[i];
else
{
mo[i*zhan[j]]=;
break;
}
}
}
for(int i=;i<=T;i++)
{
scanf("%d",&n);
ll l=,r=*n;
for(;l<=r;)
{
ll mid=(l+r)>>;
if(pan(mid))
{
ans=mid;
r=mid-;
}
else
l=mid+;
}
printf("%d\n",ans);
}
return ;
}

根据容斥原理,0个质数(1)的倍数的平方的个数-1个+2个-3个,发现每个数的贡献是莫比乌斯函数。

bzoj 2440: [中山市选2011]完全平方数的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  5. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  8. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  9. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

随机推荐

  1. MyEclipse Servers视窗出现“Could not create the view: An unexpected exception was thrown”错误解决办法

    打开所在的wordspace文件夹,在下面子文件夹 .metadata\.plugins\org.eclipse.core.runtime\.settings\com.genuitec.eclipse ...

  2. iOS开发之 Xcode 5 下让你的应用在不同状态(debug, release)有不同的图标

    http://nickcheng.com/post/unique-icons-for-your-app-in-different-state-in-xcode5-debug-release 应用在发布 ...

  3. svn设置提交忽略某些文件或文件夹

    在svn客户端,想设置忽略提交.class文件,通过 properties > New > Other 添加一个忽略的属性,,还是不行:部分屏蔽了,部分class还是在列表中 再次参考了一 ...

  4. redhat 6.4 yum 本地配置简记

    准备工作 ----------------------------------------------------------------------------- 1. 加载光驱  将iso镜像文件 ...

  5. scala调用java的方法,返回了一个对象链表List<Student>,在scala中遍历该链表获取指定Student的名字name

    假设Student类如下: class Student { private int no; private String name; public int getNo() { return no; } ...

  6. foundation系列

    1如何将布尔值转为OC对象?  1把 BOOL 值包装到 NSNumber中: NSNumber *boolNumber = [NSNumber numberWithBool:YES]  2获取BOO ...

  7. android中的通信机制总结

      第一种:使用handler来进行通信   handler 大家可以把它想象成主线程(UI线程)的一个子线程,它可以给主线程(UI线程)发送数据从而更新主线程(UI线程)的UI与逻辑,handler ...

  8. Windows定时器

    目录 第1章定时器    1 1.1 创建定时器    1 1.2 销毁定时器    1 1.3 定时器的运作    1 1.3.1 产生WM_TIMER消息    1 1.3.2 分发WM_TIME ...

  9. HTML5游戏实战(4): 20行代码实现FlappyBird

    这个系列很久没有更新了.几个月前有位读者调侃说,能不能一行代码做一个游戏呢.呵呵,接下来一段时间,我天天都在想这个问题,怎么能让GameBuilder+CanTK进一步简化游戏的开发呢.经过几个月的努 ...

  10. javaweb2 URL(查找的过程)

    URL: 全名叫统一资源定位符,用于定位互联网的资源. 问题:接上(javaweb1 tomcat)http://localhost:8080/myweb/test.html 分析:http://-- ...