UVA 10294 等价类计数
题目大意:
项链和手镯都是若干珠子穿成的环形首饰,手镯可以旋转和翻转,但项链只能旋转,给n个珠子,t种颜色,求最后能形成的手镯,项链的数量
这里根据等价类计数的polya定理求解
对于一个置换f,若一种方案经过置换后不改变,那么不改变的点的个数记作C(f)
统计所有的C(f) , 相加之后求和除以置换的种数即可
那么这道题里面
对于项链来说,旋转一个角度,也就是2*PI/n , 那么置换群可表示为
1 2 3 4 .... n
2 3 4 5 ... 1
这里就存在一个循环节
所以方案数为 t^1
自己 写着会发现,循环节的个数就是旋转数和总数的gcd值
那么不动点的个数就是 sigma(t^(gcd(i,n))
对于手镯除了上述情况,还有翻转
对于 n 为奇数,翻转对称轴有n条,这样置换形成的循环节有 (n+1)/2
对于 n 为偶数,翻转对称轴有n条,n/2条是不经过点的,这样置换形成的循环节有 (n)/2
n/2条经过两个点的,这样置换形成的循环节有 (n)/2+1
#include <cstdio>
#include <cstring> using namespace std;
#define ll unsigned long long
int n , t;
ll pow[]; int gcd(int a , int b){return b==?a:gcd(b , a%b);} void init()
{
pow[] = t;
for(int i= ; i<=n ; i++) pow[i] = pow[i-]*t;
}
int main()
{
// freopen("in.txt" , "r" , stdin);
while(~scanf("%d%d" , &n , &t)){
init();
ll a= , b=;
for(int i= ; i<=n ; i++){
a += pow[gcd(i , n)];
}
if(n&) b+= pow[(n+)/]*n;
else{
b+=(n/)*(pow[n/]+pow[n/+]);
}
printf("%lld %lld\n" , a/n , (a+b)//n);
}
}
UVA 10294 等价类计数的更多相关文章
- UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)
Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...
- UVA 10294 项链与手镯 (置换)
Burnside引理:对于一个置换\(f\), 若一个着色方案\(s\)经过置换后不变,称\(s\)为\(f\)的不动点.将\(f\)的不动点数目记为\(C(f)\), 则可以证明等价类数目为\(C( ...
- 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...
- 等价类计数:Burnside引理 & Polya定理
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...
- UVa 10601 (Polya计数 等价类计数) Cubes
用6种颜色去染正方体的12条棱,但是每种颜色都都限制了使用次数. 要确定正方体的每一条棱,可以先选择6个面之一作为顶面,然后剩下的四个面选一个作为前面,共有24种. 所以正方体的置换群共有24个置换. ...
- Uva 10294 Arif in Dhaka (First Love Part 2)
Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...
- UVa 10294 Arif in Dhaka (First Love Part 2)(置换)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...
- Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)
这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转 而 项练只能旋转 解析: 注意Poly ...
- 等价类计数(Polya定理/Burnside引理)学习笔记
参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交 ...
随机推荐
- html的空格和换行显示【摘自网络】
一.HTML 代码中的所有连续的空格或空行(换行)都会被显示为一个空格,不管是内容还是标签之间. 二.当我们想让它们在同一行连续显示时,就让所有的代码之间没有空格,也不要换行. 三.当我们想要显示连续 ...
- 网络粘贴---Xcode中可用到的快捷键
快捷键: 1.StoryBoard技巧 当你想直接在view中选择自己想要的元素时,但是又碍于一个view上叠加的元素太多很难直接选中,那么在这时,你同时按住键盘上的shift和 control键,然 ...
- Integer封装与拆箱
Integer封装与拆箱 简介: 目录: Integer自动封装的陷阱 Integer自动拆箱机制 Integer自动封装的陷阱 public class IntegerDemo { public s ...
- OpenGL的glTexCoord2f纹理坐标配置
纹理坐标配置函数,先看定义: void glTexCoord2f (GLfloat s, GLfloat t); 1.glTexCoord2f()函数 有两个参数:GLfloat s, GLfloat ...
- 牛客网 --java问答题
http://www.nowcoder.com/ 主要是自己什么都不怎么会.在这里可以学习很多的! 第一天看题自己回答,第二天看牛客网的答案! 1 什么是Java虚拟机?为什么Java被称作是“平台无 ...
- HBase集群搭建
HBase集群搭建 搭建环境:假设我们的linux环境已经准备好,包括网络.JDK.防火墙.主机名.免密登录等都没有问题,而且一定要有zookeeper.下面我们用3台linux虚拟机来搭建Hbase ...
- nosql简述
1.NoSQL数据库概念 NoSQL数据库是非关系型数据库,主要是针对关系型数据库而言,它主要是用来解决半结构化数据和非机构化数据的存储问题. 2.为什么使用NoSQL数据库? (1)对数据库的高并发 ...
- eclipse 新建 maven 项目 添加 spring hibernate 的配置文件 详情
主要配置文件 pom.xml 项目的maven 配置文件 管理项目所需 jar 依赖支持 web.xml 项目的总 配置文件 :添加 spring和hibernate 支持 applicationC ...
- JavaScript Table行定位效果
作者:cloudgamer 时间: 2009-09-17 文档类型:原创 来自:蓝色理想 第 1 页 JavaScript Table行定位效果 [1] 第 2 页 JavaScript Table行 ...
- jquery函数
1.ready函数 当 DOM(文档对象模型) 已经加载,并且页面(包括图像)已经完全呈现时,会发生 ready 事件. $(document).ready(function (){alert('11 ...