反射矩阵(reflection matrix)推导
设平面为(nx,ny,nz,d),则以此平面为镜面的列主序反射矩阵如下:

推导如下:
一,平面的表示:

如图所示,过点p,法向量为n的平面,可表示为:
np+d=0
其中d为平面到原点的有向距离。如果平面面向原点,则d为正,如果平面背向原点,则d为负。
于是平面可以表示为四维向量(nx,ny,nz,d)。
二,reflection matrix推导:

如图平面为np+d=0,Q为空间任一点,Q'为Q在平面上的投影,Q''为Q关于平面的对称点,有如下关系:
r=Q-p
a=(rn)n
b=r-a
c=-a
Q'=p+b
Q''=Q'+c
np+d=0
综合以上各式,得:
Q''=Q-2(Qn+d)n
写成分量形式即:
Q''x=Qx-2(Qx*nx+Qy*ny+Qz*nz+d)*nx
Q''y=Qy-2(Qx*nx+Qy*ny+Qz*nz+d)*ny
Q''z=Qz-2(Qx*nx+Qy*ny+Qz*nz+d)*nz
整理得:
Q''x=Qx(1-2nx*nx)+Qy(-2ny*nx)+Qz(-2nz*nx)-2d*nx
Q''y=Qx(-2nx*ny)+Qy(1-2ny*ny)+Qz(-2nz*ny)-2d*ny
Q''z=Qx(-2nx*nz)+Qy(-2ny*nz)+Qz(1-2nz*nz)-2d*nz
写成矩阵形式即:

这样就得到了reflection matrix。
unity standard assets里的Water.cs中有下面一段计算reflection matrix的代码,与上面结果一致:
// Calculates reflection matrix around the given plane
static void CalculateReflectionMatrix(ref Matrix4x4 reflectionMat, Vector4 plane)
{
reflectionMat.m00 = (1F - 2F * plane[0] * plane[0]);
reflectionMat.m01 = (- 2F * plane[0] * plane[1]);
reflectionMat.m02 = (- 2F * plane[0] * plane[2]);
reflectionMat.m03 = (- 2F * plane[3] * plane[0]);
reflectionMat.m10 = (- 2F * plane[1] * plane[0]);
reflectionMat.m11 = (1F - 2F * plane[1] * plane[1]);
reflectionMat.m12 = (- 2F * plane[1] * plane[2]);
reflectionMat.m13 = (- 2F * plane[3] * plane[1]);
reflectionMat.m20 = (- 2F * plane[2] * plane[0]);
reflectionMat.m21 = (- 2F * plane[2] * plane[1]);
reflectionMat.m22 = (1F - 2F * plane[2] * plane[2]);
reflectionMat.m23 = (- 2F * plane[3] * plane[2]);
reflectionMat.m30 = 0F;
reflectionMat.m31 = 0F;
reflectionMat.m32 = 0F;
reflectionMat.m33 = 1F;
}
参考:http://www.euclideanspace.com/maths/geometry/affine/reflection/matrix/
反射矩阵(reflection matrix)推导的更多相关文章
- 【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...
- Java - 反射机制(Reflection)
Java - 反射机制(Reflection) > Reflection 是被视为 动态语言的关键,反射机制允许程序在执行期借助于 Reflection API 取得任何类的 ...
- Java反射(Reflection)
基本概念 在Java运行时环境中,对于任意一个类,能否知道这个类有哪些属性和方法?对于任意一个对象,能否调用它的任意一个方法? 答案是肯定的. 这种动态获取类的信息以及动态调用对象的方法的功能来自于J ...
- java 反射(Reflection)
看了很多关于java 反射的文章,自己把所看到的总结一下.对自己,对他人或多或少有帮助吧. Java Reflection是什么? 首先来看看官方文档Oracle里面对Reflection的描述: R ...
- java反射机制--reflection
反射,reflection,听其名就像照镜子一样,可以看见自己也可以看见别人的每一部分.在java语言中这是一个很重要的特性.下面是来自sun公司官网关于反射的介绍: Reflection is ...
- R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...
- NumPy 矩阵库(Matrix)
NumPy 矩阵库(Matrix) NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象. 一个 的矩阵是一个由行(row)列(col ...
随机推荐
- 日历控件修改的JS代码
var bMoveable=true; var _VersionInfo=" " ; //============================================= ...
- Mac抓包工具Charles
一.下载 先到它的官网http://www.charlesproxy.com/可下载到最新版本,这个下载有点慢,我已经将它放到网盘中了:http://pan.baidu.com/s/1gdu0S4V ...
- Bat脚本处理ftp超强案例解说
Bat脚本处理ftp超强案例解说 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://369369.blog.51cto.com/31 ...
- C++学习笔记5:如何给变量及函数命名?
1.遵循C++规定的变量及函数命名方法: 2.原则:简单,易于理解: 以下是一些例子,可以作为参考: //bad examples: int ccount;//Nobody knows what a ...
- 【Sublime Text 3】
- PAT (Basic Level) Practise:1039. 到底买不买
[题目链接] 小红想买些珠子做一串自己喜欢的珠串.卖珠子的摊主有很多串五颜六色的珠串,但是不肯把任何一串拆散了卖.于是小红要你帮忙判断一下,某串珠子里是否包含了全部自己想要的珠子?如果是,那么告诉她有 ...
- 跟开涛老师学shiro -- 编码/加密
在涉及到密码存储问题上,应该加密/生成密码摘要存储,而不是存储明文密码.比如之前的600w csdn账号泄露对用户可能造成很大损失,因此应加密/生成不可逆的摘要方式存储. 5.1 编码/解码 Shir ...
- WeCenter程序安装
WeCenter程序安装时需要GD库和freetype的支持,以下是安装方法 GD库的安装:我们可以直接使用yum命令来安装,自动解决依赖关系及安装GD库相关的包. [root@localhost ~ ...
- ANTLR3完全参考指南读书笔记[03]
前言 文中第4章内容有点多,有点枯燥,但不坚持一下,之前所做的工作就白做了. 再次确认一下总体目标: protege4编辑器中Class Definition中语法解析和错误提示: Java虚拟机规范 ...
- dennis gabor 从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换(转载)
dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅 ...