题目链接:http://codeforces.com/problemset/problem/189/A

题意:给你长为n的绳子,每次只允许切a,b,c三种长度的段,问最多能切多少段。注意每一段都得是a,b,c中长度的一种。

解法:这个题可以看作是完全背包,但是由于切割长度有限制,所以要做一些调整。我们初始化dp(i)为长度为i时的最优解。一开始dp(a)=dp(b)=dp(c)=1是显而易见的,我们转移的起点也是这里。我们不希望枚举到不符合条件的情况,所以多一步判断:dp[j-w[i]] != 0

 /*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%I64d", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(LL i = 0; i < (len); i++)
#define For(i, a, len) for(LL i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Fuint(a) memset((a), 0x7f7f, sizeof(a))
#define lrt rt << 1
#define rrt rt << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long Uint;
typedef pair<LL, LL> pii;
typedef pair<string, LL> psi;
typedef map<string, LL> msi;
typedef vector<LL> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int maxn = ;
int dp[maxn];
int n;
int w[]; int main() {
// FRead();
Cls(dp);
Rint(n);
For(i, , ) {
Rint(w[i]);
dp[w[i]] = ;
}
For(i, , ) {
For(j, w[i], n+) {
bool flag = ;
if(dp[j-w[i]]) {
dp[j] = max(dp[j], dp[j-w[i]]+);
}
}
}
printf("%d\n", dp[n]);
RT ;
}

[CF189A]Cut Ribbon(完全背包,DP)的更多相关文章

  1. Codeforces Round #119 (Div. 2) Cut Ribbon(DP)

    Cut Ribbon time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  2. Codeforces Round #119 (Div. 2)A. Cut Ribbon

    A. Cut Ribbon time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  3. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  4. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  7. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  8. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. 使用开关、分段控件和web视图

    #import "XViewController.h" @interface XViewController () @end @implementation XViewContro ...

  2. windows 上配置solr5.2.1+solr4.3+中文分词器

    搭建5.2.1 1.下载 Tomcat解压后的目录为 D:\Program Files\Apache Software Foundation\apache-tomcat-8.0.22 solr解压后的 ...

  3. Coding4Fun.Phone.Controls的使用

    Coding4Fun.Phone.Controls的使用: windows phone的应用一直有一个特色,那就是方块(磁贴).之前的应用中,我一直都XXXX 来实现,原来其实一直有一个更加好的方法, ...

  4. [geeksforgeeks] Lowest Common Ancestor in a Binary Search Tree.

    http://www.geeksforgeeks.org/lowest-common-ancestor-in-a-binary-search-tree/ Lowest Common Ancestor ...

  5. xp/2003开关3389指令

    开启3389: @echo offtitle 开启3389clsrem 开启3389reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ ...

  6. tomcat与IIS在多IP服务器下的支持

    同一个服务器下,双IP(或更多IP),实现tomcat与IIS公用80端口. 操作其实也很简单的,首先禁用iis的套接字池,iis绑定一个ip,然后tomcat在绑定另一个ip,最后重启下服务器即可. ...

  7. ES6中的高阶函数:如同 a => b => c 一样简单

    作者:Sequoia McDowell 2016年01月16日 ES6来啦!随着越来越多的代码库和思潮引领者开始在他们的代码中使用ES6,以往被认为是"仅需了解"的ES6特性变成了 ...

  8. A Product Array Puzzle

    Given an array arr[] of n integers, construct a Product Array prod[] (of same size) such that prod[i ...

  9. NSOJ 鬼泣

    今天组队赛的一道最短路的题,给你一个矩阵,矩阵上有L,R,G,A,分别表示当你到达这个点的时候你要向左,向右,向前,向后走,如果要向别的方向走需要花费1点的魔力,正常情况下走需要花费1点的时间.问花费 ...

  10. cf div2 238 c

    C. Unusual Product time limit per test 1 second memory limit per test 256 megabytes input standard i ...