题意:有一个n*m的矩阵,每个格子中有一个数字,或为0,或为1。有个人要从(1,1)到达(n,m),要求所走过的格子中的数字按先后顺序串起来后,用二进制的判断大小方法,让这个数字最小。前缀0不需要输出!!

思路:主要考虑的是BFS解决。

  如果grid[1,1]=1,那么这个二进制的位数也就定下来了,是n+m-1,很好解决,每个格子就只能往下或者往右,否则长度一定超过n+m+1,必定不是最优。

  如果grid[1,1]=0,那么可能会出现绕了一个S型到终点的结果为0而已。所以不能用老办法,要先预处理一下。处理方式是,用BFS将所有grid[1,1]可达的0点标记出来,找出其中距离终点最近的那些0点(可能多个),如果他们的下和右边的点为1,这些点都进队,再用上边方式BFS即可求得答案(上面只是1个起点,这边有多个起点,不影响正确性)。

  答案在哪?其实在BFS时每一层只能是0点或者是1点,为什么呢?如果有0点的话,还需要选择1点的吗?别忘了二进制的位数是固定了,选0肯定比选1要好,则在没有0的情况下再选1的。 在遍历时按层遍历,遍历到的点先分到两个集合A0和B1中,择所需即可,所以在遍历第i层时第i位的答案也就决定了。这是剪枝!

  注意考虑只有1个点,2个点和S形等各种情况。

 #include <bits/stdc++.h>
#define INF 0x7f7f7f7f
#define pii pair<int,int>
#define LL unsigned long long
using namespace std;
const int N=;
int n, m;
char grid[N][N];
vector<int> ans;
int inq[N][N]; void BFS(deque<pii> &que)
{
ans.push_back();
while(!que.empty())
{
deque<pii> que0, que1; //两种到达的方式,只取其一
int siz=que.size();
for(int i=; i<siz; i++) //被更新的都是同一源头的。
{
int a=que.front().first;
int b=que.front().second;
que.pop_front(); if( a+<=n && !inq[a+][b] ) //下:要么你无路径可达,要么我比你小,我才更新你
{
if(grid[a+][b]=='') que0.push_back(make_pair(a+,b));
else que1.push_back(make_pair(a+,b));
}
if( b+<=m && !inq[a][b+] ) //右
{
if(grid[a][b+]=='') que0.push_back(make_pair(a,b+));
else que1.push_back(make_pair(a,b+));
}
inq[a+][b]=inq[a][b+]=;
} if(!que0.empty()) ans.push_back();
else ans.push_back(); if(!que0.empty()) que.insert(que.end(), que0.begin(), que0.end() );
else que.insert(que.end(), que1.begin(), que1.end() );
}
} int cal()
{
memset(inq, , sizeof(inq)); deque<pii> que;que.push_back( make_pair(,));
if(grid[][]=='') //若起点为0,找到所有离终点最近的前缀0
{
inq[][]=;
while(!que.empty())
{
int siz=que.size();
for(int i=; i<siz; i++) //按层来BFS,按层记录最优答案
{
int a=que.front().first;
int b=que.front().second;
que.pop_front(); if(a+<=n && !inq[a+][b] && grid[a+][b]=='') que.push_back(make_pair(a+,b));
if(a-> && !inq[a-][b] && grid[a-][b]=='') que.push_back(make_pair(a-,b)); if(b+<=m && !inq[a][b+] && grid[a][b+]=='') que.push_back(make_pair(a,b+));
if(b-> && !inq[a][b-] && grid[a][b-]=='') que.push_back(make_pair(a,b-)); inq[a+][b]=inq[a-][b]=inq[a][b+]=inq[a][b-]=; //防止重复进队
}
}
int min_dis=INF;
for(int i=; i<=n; i++) //求最近的0距离终点的最小距离
{
for(int j=; j<=m; j++)
{
if(inq[i][j]&&grid[i][j]=='')
min_dis=min(min_dis, n+m-j-i);
}
}
if(grid[n][m]=='' && min_dis==) return ; //有0路可达终点
for(int i=; i<=n; i++) //扫出距离为min_dis的所有0点
for(int j=; j<=m; j++)
if(inq[i][j] && grid[i][j]=='' && min_dis==n+m-j-i && n+m-i-j!= )
que.push_back(make_pair(i,j)); memset(inq,,sizeof(inq));
int siz=que.size();
for(int i=; i<siz; i++) //将所有0点的下和右为1的点进队
{
int a=que.front().first;
int b=que.front().second;
que.pop_front();
if(a+<=n&&!inq[a+][b]&&grid[a+][b]=='') que.push_back(make_pair(a+,b));
if(b+<=m&&!inq[a][b+]&&grid[a][b+]=='') que.push_back(make_pair(a,b+));
inq[a+][b]=inq[a][b+]=;
}
}
BFS(que);
return ans.size();
} int main()
{
freopen("input.txt", "r", stdin);
int t, a, b;
char c;
cin>>t;
while(t--)
{
ans.clear();
scanf("%d %d",&n,&m); for(int i=; i<=n; i++) //输入要注意
for(int j=; j<=m; j++)
{
c=getchar();
if(c==''||c=='' ) grid[i][j]=c;
else j--;
}
int s=cal();
if(s==) printf("");
else for(int i=; i+<ans.size(); i++) printf("%d",ans[i]);//最后一个数字多余
printf("\n");
}
return ;
}

AC代码

HDU 5335 Walk Out (BFS,技巧)的更多相关文章

  1. HDU 5335 Walk Out BFS 比较坑

    H - H Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status ...

  2. hdu 5335 Walk Out(bfs+斜行递推) 2015 Multi-University Training Contest 4

    题意—— 一个n*m的地图,从左上角走到右下角. 这个地图是一个01串,要求我们行走的路径形成的01串最小. 注意,串中最左端的0全部可以忽略,除非是一个0串,此时输出0. 例: 3 3 001 11 ...

  3. hdu 5335 Walk Out(bfs+寻找路径)

    Problem Description In an n∗m maze, the right-bottom corner or a written on it. An explorer gets los ...

  4. hdu 5335 Walk Out (搜索)

    题目链接: hdu 5335 Walk Out 题目描述: 有一个n*m由0 or 1组成的矩形,探险家要从(1,1)走到(n, m),可以向上下左右四个方向走,但是探险家就是不走寻常路,他想让他所走 ...

  5. HDU 5335——Walk Out——————【贪心】

    Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  6. HDU 5335 Walk Out(多校)

    Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  7. hdu 5335 Walk Out (2015 Multi-University Training Contest 4)

    Walk Out                                                                         Time Limit: 2000/10 ...

  8. hdu 5335 Walk Out 搜索+贪心

    Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S ...

  9. 2015 Multi-University Training Contest 4 hdu 5335 Walk Out

    Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

随机推荐

  1. HDU 2126 Buy the souvenirs (01背包,输出方案数)

    题意:给出t组数据 每组数据给出n和m,n代表商品个数,m代表你所拥有的钱,然后给出n个商品的价值 问你所能买到的最大件数,和对应的方案数.思路: 如果将物品的价格看做容量,将它的件数1看做价值的话, ...

  2. awk处理之案例二:awk匹配文本

    编译环境 本系列文章所提供的算法均在以下环境下编译通过. [脚本编译环境]Federa 8,linux 2.6.35.6-45.fc14.i686 [处理器] Intel(R) Core(TM)2 Q ...

  3. 【剑指offer】从尾到头打印链表

    我的思路:先翻转链表,再打印. 网上思路:利用栈的后进先出性质:或者用递归,本质也是栈. 我的代码: #include <vector> using namespace std; stru ...

  4. SQl 字段中出现某一个词语的次数

    select length(f3) - length(replace(f3, 'a','')) from t1 简单的,如果,要统计 good 出现的次数,改成 select (length(f3) ...

  5. Django视频教程 - 基于Python的Web框架(全13集)

    Django是由Python驱动的开源模型-视图-控制器(MVC)风格的Web应用程序框架,使用Django可以在即可分钟内快速开发一个高品质易维护数据库驱动的应用程序.下面是一大坨关于Django应 ...

  6. linq 常用语句

    自己练习的 switch (productDataAnalysisQuery.DataType) { : var data = (from hp in GPEcontext.hbl_product j ...

  7. C# Task的使用---Task的启动

    .NET 4.0包含的新名称空间System.Threading.Tasks,它包含的类抽象出了线程功能.任务表示应完成的某个单元的工作.这个单元的工作可以在单独的线程中运行,也可以以同步的方式启动一 ...

  8. Android 核心分析之十二Android GEWS窗口管理之基本架构原理

    Android GWES之窗口管理之基本构架原理 Android的窗口管理是C/S模式的.Android中的Window是表示Top Level等顶级窗口的概念.DecorView是Window的To ...

  9. iOS开发推送--客户端 服务端

    1.推送过程简介 (1)App启动过程中,使用UIApplication::registerForRemoteNotificationTypes函数与苹果的APNS服务器通信,发出注册远程推送的申请. ...

  10. jquery.lazyload用法

    lazyload是jquery的插件,作为延迟加载图片,减压服务器压力. 如何使用: 先把 <script src="jquery.js" type="text/j ...