HDU 2196 求树上所有点能到达的最远距离
其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了...
但是乱搞一下还是有80分....可惜没想到正解啊!
所以今天的考试题是:
巡访 (path.pas/c/cpp)
Chanxer终于当上了“中华农民联盟”的盟主,他举目四望,决定四处走走,巡视自己的农土。
“中华农民联盟”的成员有个村庄,在“村村通”计划中,村庄们被条道路联通了起来,Chanxer计划从某个村庄出发,访问所有的村庄。
可是Chanxer出行有一个特殊的要求,那就是必须以农车代步,现在我们知道哪些村庄配备有农车,也就是说,只有配备有农车的村庄才能够被作为出发点。
Chanxer有点懒,他想知道访问全部的村庄所要走的路程长度最小是多少。
树的节点数 n<=10^5
题目大意:已知一棵树,求一条满足一个端点为给定的端点的最长链。
其实就是求出每个点能到达的最远距离 [这就是我们的标题所给题目要求的]。
所以应该怎么做呢?
方法一:
经过证明,从树上任意一个点出发到达的最远的点一定是这棵树的直径的一个端点。
反过来,从直径的端点出发到达每个点的距离也一定是最远距离... [我怎么就没想到...囧]
所以先找到两个端点[先从随意一个点出发,然后这个点一定是一个端点,端点的最远点就是另一个端点],然后再跑一遍dfs就可以了[ 因为找第二个端点的时候已经跑过一遍了 ]...
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<queue>
#include<algorithm> using namespace std; inline int in(){
int x=;char ch=getchar();
while(ch>'' || ch<'') ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return x;
} const int maxn=;
const int INF=0x3f3f3f3f; struct Node{
int data,next,weight;
}node[maxn<<]; #define now node[point].data
#define then node[point].next
#define www node[point].weight int n,cnt;
long long M_dis,M_sit=,M_dis1;
int star[maxn];
int head[maxn];
bool vis[maxn];
long long ans,Sum;
long long f[maxn]; inline void add(int u,int v,int w){
node[cnt].data=v;node[cnt].next=head[u];node[cnt].weight=w;head[u]=cnt++;
node[cnt].data=u;node[cnt].next=head[v];node[cnt].weight=w;head[v]=cnt++;
} int dfs(int x,long long sum){
vis[x]=true;
if(sum>M_dis)
M_dis=sum,M_sit=x;
for(int point=head[x];point!=-;point=then)
if(!vis[now])
dfs(now,sum+www);
vis[x]=false;
} int dfs2(int x,long long sum){
vis[x]=true;f[x]=max(f[x],sum);
if(sum>M_dis)
M_dis=sum,M_sit=x;
for(int point=head[x];point!=-;point=then)
if(!vis[now])
dfs2(now,sum+www);
vis[x]=false;
} int main(){
freopen("path.in","r",stdin);
freopen("path.out","w",stdout); int u,v,w,cot=; n=in();
for(int i=;i<=n;i++) head[i]=-;
for(int i=;i<n;i++){
u=in(),v=in(),w=in(),add(u,v,w);
Sum+=w<<;
}
for(int i=;i<=n;i++) star[i]=in(),cot+=star[i]; dfs(,);
int t=M_sit;
dfs2(t,);
dfs2(M_sit,); for(int i=;i<=n;i++)
if(star[i])
ans=max(ans,f[i]); ans=Sum-ans; printf("%lld",ans); return ;
}
方法二:
详情可以见代码
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; inline int in(){
int x=;char ch=getchar();
while(ch>'' || ch<'') ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return x;
} const int maxn=; struct Node{
int data,next,weight;
}node[maxn<<]; #define now node[point].data
#define then node[point].next
#define www node[point].weight int n,cnt,ans,Sum;
int head[maxn];
int Max[maxn],Maxv[maxn];
int Smax[maxn],Smaxv[maxn]; inline void add(int u,int v,int w){
node[cnt].data=v;node[cnt].next=head[u];node[cnt].weight=w;head[u]=cnt++;
node[cnt].data=u;node[cnt].next=head[v];node[cnt].weight=w;head[v]=cnt++;
} void dfs(int x,int p){
for(int point=head[x];point!=-;point=then){
if(now==p) continue;
dfs(now,x);
if(Smax[x]<Max[now]+www){
Smax[x]=Max[now]+www,Smaxv[x]=now;
if(Smax[x]>Max[x]){
swap(Smax[x],Max[x]);
swap(Smaxv[x],Maxv[x]);
}
}
}
} void dfs2(int x,int p){
for(int point=head[x];point!=-;point=then){
if(now==p) continue;
if(now==Maxv[x]){
if(Smax[now]<Smax[x]+www){
Smax[now]=Smax[x]+www;Smaxv[now]=x;
if(Smax[now]>Max[now]){
swap(Smax[now],Max[now]);
swap(Smaxv[now],Maxv[now]);
}
}
}
else{
if(Smax[now]<Max[x]+www){
Smax[now]=Max[x]+www;Smaxv[now]=x;
if(Smax[now]>Max[now]){
swap(Smax[now],Max[now]);
swap(Smaxv[now],Maxv[now]);
}
}
}
dfs2(now,x);
}
} int main(){
freopen("path.in","r",stdin);
freopen("path.out","w",stdout); int u,v,w; n=in();
for(int i=;i<=n;i++) head[i]=-;
for(int i=;i<n;i++)
u=in(),v=in(),w=in(),add(u,v,w),Sum+=(w<<); dfs(,-);
dfs2(,-); for(int i=;i<=n;i++)
if(u=in()) ans=max(ans,Max[i]); printf("%d",Sum-ans); return ;
}
另附标题的AC通道:
http://acm.hdu.edu.cn/showproblem.php?pid=2196
HDU 2196 求树上所有点能到达的最远距离的更多相关文章
- HDU 2196 Computer (树上最长路)【树形DP】
<题目链接> 题目大意: 输出树上每个点到其它点的最大距离. 解题分析: 下面的做法是将树看成有向图的做法,计算最长路需要考虑几种情况. dp[i][0] : 表示以i为根的子树中的结点与 ...
- HDU 2196 Computer( 树上节点的最远距离 )
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 2196(方法1:经典树形DP+方法2:树的直径)
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 求树上任意一点所能到达的最远距离 - 树上dp
A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...
- HDU 2196.Computer 树形dp 树的直径
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 2196树形DP(2个方向)
HDU 2196 [题目链接]HDU 2196 [题目类型]树形DP(2个方向) &题意: 题意是求树中每个点到所有叶子节点的距离的最大值是多少. &题解: 2次dfs,先把子树的最大 ...
- hdu 2196【树形dp】
http://acm.hdu.edu.cn/showproblem.php?pid=2196 题意:找出树中每个节点到其它点的最远距离. 题解: 首先这是一棵树,对于节点v来说,它到达其它点的最远距离 ...
- HDU 2196 树形DP Computer
题目链接: HDU 2196 Computer 分析: 先从任意一点开始, 求出它到其它点的最大距离, 然后以该点为中心更新它的邻点, 再用被更新的点去更新邻点......依此递推 ! 代码: ...
- 【HDU 2196】 Computer(树的直径)
[HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...
随机推荐
- Knockout.Js官网学习(click绑定)
前言 click绑定在DOM元素上添加事件句柄以便元素被点击的时候执行定义的JavaScript 函数.大部分是用在button,input和连接a上,但是可以在任意元素上使用. 简单示例 <h ...
- ip的正则表达式 完美版
IP地址的长度为32位2进制,分为4段,每段8位,用十进制数字表示,每段数字范围为0~255,段与段之间用英文句点“.”隔开.例如:IP地址为10.0.0.100. 分析IP地址的每组数特点:百位,十 ...
- PHP,Mysql-根据一个给定经纬度的点,进行附近地点查询–合理利用算法,效率提高2125倍
目前的工作是需要对用户的一些数据进行分析,每个用户都有若干条记录,每条记录中有用户的一个位置,是用经度和纬度表示的.还有一个给定的数据库,存储的是一些已知地点以及他们的经纬度,内有43W多条的数据.现 ...
- Windows7不能打开telnet功能
在dos窗口中输入telnet命令提示如下: 解决方法是打开控制面板中的程序和功能,选择打开或关闭Window是功能,如下: 勾选上面的Telnet客户端,然后确定,出现下图.稍等片刻重新打开命令行, ...
- 可以获取get post url 传递参数的统一方法
public static string objRequest(string requestName) { object obj = HttpContext.Current.Request[reque ...
- SHOW SLAVE STATUS几个常见参数
--显示当前读取的Master节点二进制日志文件和文件位置,对应线程I/O thread Master_Log_File: mysql-bin.000011 Read_Master_Log_Pos: ...
- 【转】Linux Soclet编程
原文地址:http://www.cnblogs.com/skynet/archive/2010/12/12/1903949.html “一切皆Socket!” 话虽些许夸张,但是事实也是,现在的网络编 ...
- 第六章 管理类型(In .net4.5) 之 创建类型
1. 概述 本章内容包括 C#5中如何更好的创建类型以及如何扩展现有类型. 2. 主要内容 2.1 如何选择类型 C#类型系统包括三种类型:值类型.引用类型.指针类型.(指针类型用于非托管代码,很少使 ...
- MongoDB 学习笔记(二)—— MongoDB Shell
MongoDB自带一个JavaScript shell 可以从命令行中与MongoDB交互,功能非常强大.如在上一节最后一张图所看到,可以执行JavaScript程序. 运行Shell 前提是启动Mo ...
- python Django 学习笔记(五)—— Django admin自动管理界面
1,激活管理界面 修改settings.py MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.c ...