UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)
先看第一题,有n*m个点,求在这些点中,有多少条直线,经过了至少两点,且不是水平的也不是竖直的。
分析:由于对称性,我们只要求一个方向的线即可。该题分成两个过程,第一个过程是求出n*m的矩形中,dp[i][j]代表在这个矩形中终点是到(i,j)这个点的满足题意的直线条数,那么,用dp的话就可以得出递推关系:由长和宽分别小1的左右两个矩形中满足题意的线的条数减去他们共有的矩形中满足的线的条数(容斥减去重复部分),之后还要判断从最左上角的点(1,1)到(i,j)是否可以组成一条线,这个条件是gcd(i,j)是否等于1。
之后第二个过程就是递推答案了,设ans[i][j]表示在这个矩形中满足题意的条数,那么同样的,可以由上面的容斥来递推,同时,还要加上这个矩形内到(i,j)这个点满足的条数,另外还要减去一半规模大小的到这个点的线的条数,因为如果(i,j)为(6,8),那么一半规模下,(1,1)到(3,4)这个点的线和到(6,8)这条线是重复的。
这样就做完了题目(最后不要忘了乘以2)。具体见代码:
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int N = +; int dp[N][N];
int ans[N][N]; int gcd(int a,int b) {return a%b?gcd(b,a%b):b;} void init()
{
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
dp[i][j] = dp[i-][j] + dp[i][j-] - dp[i-][j-] + (gcd(i,j)==);
}
}
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
ans[i][j] = ans[i-][j] + ans[i][j-] - ans[i-][j-] + dp[i][j] - dp[i>>][j>>];
}
}
} int main()
{
init();
int n,m;
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==) break;
printf("%d\n",*ans[n-][m-]);
}
}
做出了这题,第二题就是类似的了。先在所有的点中枚举出选3个点的可能性,然后,减去一条水平或者竖直线上重复的,再减去同在一条斜线上重复的即可。相当类似,具体见代码吧:
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int N = +; ll dp[N][N];
ll ans[N][N]; int gcd(int a,int b) {return a%b?gcd(b,a%b):b;} void init()
{
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
dp[i][j] = dp[i-][j] + dp[i][j-] - dp[i-][j-] + (ll)(gcd(i,j)-);
}
}
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
ans[i][j] = ans[i-][j] + ans[i][j-] - ans[i-][j-] + dp[i][j];
}
}
} ll C(ll x) {return x*(x-)*(x-)/;} int main()
{
init();
int n,m;
int cnt = ;
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==) break;
ll Ans = C((n+)*(m+)) - (n+)*C(m+) - (m+)*C(n+);
Ans -= *ans[n][m];
cout<<"Case "<<cnt++<<": "<<Ans<<endl;
}
}
但是,这两题都要注意的地方是,递推dp时三个矩形都是在右下角的(因为向下或者向右平移一个单位的话条数是不变的),这样递推起来的话只要再考虑从(1,1)这个点到(i,j)这个点的情况即可;而递推ans的时候,矩形是偏左上方的,那么,只要再加上整个大矩形内到(i,j)这个点的情况即可。当然,纯属个人理解。
UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)的更多相关文章
- UVA 12075 - Counting Triangles(容斥原理计数)
题目链接:12075 - Counting Triangles 题意:求n * m矩形内,最多能组成几个三角形 这题和UVA 1393类似,把总情况扣去三点共线情况,那么问题转化为求三点共线的情况,对 ...
- uva 1393 - Highways(容斥原理)
题目连接:uva 1393 - Highways 题目大意:给定一个m∗n的矩阵,将矩阵上的点两两相连,问有多少条直线至少经过两点. 解题思路:头一次做这样的题目,卡了一晚上. dp[i][j]即为i ...
- UVA 12075 Counting Triangles
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- UVa 1393 - Highways(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1393 Highways(数学思想)
题意:给你n.m(n,m<=200),问你有多少条非水平.非垂直的直线有多少条经过至少两个点 题解:我们需要枚举的是只画一条线的矩形,对于大小a*b的矩形必须保证gcd(a,b)=1才能不重复 ...
- UVA 1393 Highways
https://vjudge.net/problem/UVA-1393 题意: a*b的点阵中能画多少条非水平非竖直的直线 方向‘/’ 和 方向 ‘\’ 对称 枚举直线所在矩形的i*j 直线可能重复的 ...
- UVa 1393 (容斥原理、GCD) Highways
题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围 ...
- hdu 1396 Counting Triangles(递推)
Counting Triangles Problem Description Given an equilateral triangle with n thelength of its side, p ...
- Counting Triangles(hd1396)
Counting Triangles Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
随机推荐
- Linux weblogic启停
一般weblogic启停在windows下很方便使用图标方式.但是在linux下需要杀掉weblogic进程才能真正关掉weblogic. 1.查询weblogic进程 ps -ef | grep & ...
- Ubuntu编写开机启动脚本
1 概述 服务器一般不可能百分之百不会挂,于是一般采用主备或者分布式来达到高可用. 挂掉的机器有很多处理策略,常用的就是重新启动,但是为了保证重启之后服务器能够恢复可用状态,需要配置开机启动脚本. 2 ...
- C#学习基础资料记录---字典(Dictionary),时间表示方法(DateTime.Now),文件操作
1.字典 https://www.cnblogs.com/gengaixue/p/4002244.html 2.时间的表示方法 DateTime.Now的多种用法 https://www.cnblog ...
- JSON在JS中的应用
一. JSON在JS中的应用: 首先解释下JSON对象与普通js对象字面量定义时格式的区别: Js对象字面量定义格式: var person = { name:"Wede", ag ...
- Java面试题之Java虚拟机垃圾回收
JVM的垃圾回收机制,在内存充足的情况下,除非你显式的调用System.gc(),否则不会进行垃圾回收:在内存充足的情况下垃圾回收会自动运行. 一.引用计数算法 1.定义:引用计数算法会给对象添加一个 ...
- ELECTRON 打包
安装electron-packager cnpm install electron-packager -g 配置package.json "scripts": { "st ...
- ARMA(p,q)模型数据的产生
一.功能 产生自回归滑动平均模型\(ARMA(p,q)\)的数据. 二.方法简介 自回归滑动平均模型\(ARMA(p,q)\)为 \[ x(n)+\sum_{i=1}^{p}a_{i}x(n-i)=\ ...
- 异步处理的框架Sanic的使用方法和小技巧
Sanic是异步处理的框架,运用Sanic可以开发快速异步响应的web程序.想必大家看到这个都会比较期待和兴奋. 那么如何使用Sanic来实现快速响应呢?我们先来看一看Sanic的基本介绍. Sani ...
- DA_01_linux_物理机局域网工作机制
一:物理机局域网工作机制: 二:域名服务的工作流程: 首先通过域名映射到IP地址,如果没有找到域名,向外部服务器DNS查询,然后通过IP地址访问服务器: 三:Vmware--NAT虚拟网络配置:
- python再学习笔记
python各种半桶水QAQ,一些特性经常跟其他语言搞混,官方入门文档重读温习...... 最好用4个空格的缩进空值是Python里一个特殊的值,用None表示变量就是在程序中用来指向这些数据对象的, ...