先看第一题,有n*m个点,求在这些点中,有多少条直线,经过了至少两点,且不是水平的也不是竖直的。

  分析:由于对称性,我们只要求一个方向的线即可。该题分成两个过程,第一个过程是求出n*m的矩形中,dp[i][j]代表在这个矩形中终点是到(i,j)这个点的满足题意的直线条数,那么,用dp的话就可以得出递推关系:由长和宽分别小1的左右两个矩形中满足题意的线的条数减去他们共有的矩形中满足的线的条数(容斥减去重复部分),之后还要判断从最左上角的点(1,1)到(i,j)是否可以组成一条线,这个条件是gcd(i,j)是否等于1。

  之后第二个过程就是递推答案了,设ans[i][j]表示在这个矩形中满足题意的条数,那么同样的,可以由上面的容斥来递推,同时,还要加上这个矩形内到(i,j)这个点满足的条数,另外还要减去一半规模大小的到这个点的线的条数,因为如果(i,j)为(6,8),那么一半规模下,(1,1)到(3,4)这个点的线和到(6,8)这条线是重复的。

  这样就做完了题目(最后不要忘了乘以2)。具体见代码:

 #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int N = +; int dp[N][N];
int ans[N][N]; int gcd(int a,int b) {return a%b?gcd(b,a%b):b;} void init()
{
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
dp[i][j] = dp[i-][j] + dp[i][j-] - dp[i-][j-] + (gcd(i,j)==);
}
}
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
ans[i][j] = ans[i-][j] + ans[i][j-] - ans[i-][j-] + dp[i][j] - dp[i>>][j>>];
}
}
} int main()
{
init();
int n,m;
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==) break;
printf("%d\n",*ans[n-][m-]);
}
}

  做出了这题,第二题就是类似的了。先在所有的点中枚举出选3个点的可能性,然后,减去一条水平或者竖直线上重复的,再减去同在一条斜线上重复的即可。相当类似,具体见代码吧:

 #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int N = +; ll dp[N][N];
ll ans[N][N]; int gcd(int a,int b) {return a%b?gcd(b,a%b):b;} void init()
{
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
dp[i][j] = dp[i-][j] + dp[i][j-] - dp[i-][j-] + (ll)(gcd(i,j)-);
}
}
for(int i=;i<N;i++)
{
for(int j=;j<N;j++)
{
ans[i][j] = ans[i-][j] + ans[i][j-] - ans[i-][j-] + dp[i][j];
}
}
} ll C(ll x) {return x*(x-)*(x-)/;} int main()
{
init();
int n,m;
int cnt = ;
while(scanf("%d%d",&n,&m)==)
{
if(n== && m==) break;
ll Ans = C((n+)*(m+)) - (n+)*C(m+) - (m+)*C(n+);
Ans -= *ans[n][m];
cout<<"Case "<<cnt++<<": "<<Ans<<endl;
}
}

  

  但是,这两题都要注意的地方是,递推dp时三个矩形都是在右下角的(因为向下或者向右平移一个单位的话条数是不变的),这样递推起来的话只要再考虑从(1,1)这个点到(i,j)这个点的情况即可;而递推ans的时候,矩形是偏左上方的,那么,只要再加上整个大矩形内到(i,j)这个点的情况即可。当然,纯属个人理解。

UVA 1393 Highways,UVA 12075 Counting Triangles —— (组合数,dp)的更多相关文章

  1. UVA 12075 - Counting Triangles(容斥原理计数)

    题目链接:12075 - Counting Triangles 题意:求n * m矩形内,最多能组成几个三角形 这题和UVA 1393类似,把总情况扣去三点共线情况,那么问题转化为求三点共线的情况,对 ...

  2. uva 1393 - Highways(容斥原理)

    题目连接:uva 1393 - Highways 题目大意:给定一个m∗n的矩阵,将矩阵上的点两两相连,问有多少条直线至少经过两点. 解题思路:头一次做这样的题目,卡了一晚上. dp[i][j]即为i ...

  3. UVA 12075 Counting Triangles

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  4. UVa 1393 - Highways(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA 1393 Highways(数学思想)

    题意:给你n.m(n,m<=200),问你有多少条非水平.非垂直的直线有多少条经过至少两个点 题解:我们需要枚举的是只画一条线的矩形,对于大小a*b的矩形必须保证gcd(a,b)=1才能不重复 ...

  6. UVA 1393 Highways

    https://vjudge.net/problem/UVA-1393 题意: a*b的点阵中能画多少条非水平非竖直的直线 方向‘/’ 和 方向 ‘\’ 对称 枚举直线所在矩形的i*j 直线可能重复的 ...

  7. UVa 1393 (容斥原理、GCD) Highways

    题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围 ...

  8. hdu 1396 Counting Triangles(递推)

    Counting Triangles Problem Description Given an equilateral triangle with n thelength of its side, p ...

  9. Counting Triangles(hd1396)

    Counting Triangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. 谈谈对Spring IOC的理解(转发)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  2. Java lesson08 Homework

    1:1. 写一个类Param,声明四个成员变量a.b.c.d,分别赋予四种访问权限. (1)试验在同一个包中的另一个类里能访问哪几个变量? (2)试验在不同包中的另一个类里能访问哪几个变量? (3)试 ...

  3. iOS开发中常用的颜色及其对应的颜色值

      R G B 值   R G B 值   R G B 值 黑色 0 0 0 #000000 黄色 255 255 0 #FFFF00 浅灰蓝色 176 224 230 #B0E0E6 象牙黑 41 ...

  4. Java面试题之Java虚拟机垃圾回收

    JVM的垃圾回收机制,在内存充足的情况下,除非你显式的调用System.gc(),否则不会进行垃圾回收:在内存充足的情况下垃圾回收会自动运行. 一.引用计数算法 1.定义:引用计数算法会给对象添加一个 ...

  5. 每日一句 Linux, 持续精进

    每日一句 Linux, 持续更新 2019.12.10 1.远程登录 linux 服务器.首先要按照ssh(win10默认是安装了的).命令行窗口,使用 ssh 登录名@serverIp,之后输入密码 ...

  6. php 限制标题长度,将一个中文转换成一个字符

    点击链接加入群[php/web 学习课堂]:https://jq.qq.com/?_wv=1027&k=5UJ9vEa 欢迎大家加入,一起讨论学习 玩这个功能的时候,我们要注意一点,我们是用中 ...

  7. 12-factor应用和微服务架构应用的区别

    SAP云平台的帮助文档很多时候将12-factor应用和微服务架构的应用相提并论. 然而从Allan Beck和John Mcteague的Cloud成熟度模型概念里,12-factor应用从成熟度上 ...

  8. sql 随机数系列

    一.把数据库把某个字段更新为随机数 DECLARE @Hour INT DECLARE @Counts INT SET @Hour =DATENAME(HOUR, GETDATE()) ) BEGIN ...

  9. linux命令 - nohup

    nohup command & nohup scrapy crawl eeo > /home/wangliang/eeo.log & nohou 需要后台的命令 打印的日志位置 ...

  10. oracle exp 导出前执行分析计划

    记录一下小小问题: 当作为一个dmp 库导出的时候.如果我们在之前进行 对用户下的所有表进行分析.   那么在导入的时候 会连同分析计划数据一并导入 imp 导入dmp文件报错 IMP-00017: ...