cf 467 C

从序列中选出 \(k\) 段连续的 \(m\) 个数

最大化总和

\(f_{i, j}\) 表示前 \(i\) 个位置中选出了 \(j\) 段

转移显然

#include <bits/stdc++.h>

const int N = 5010;

long long f[N][N];
int n, m, k;
long long Sum[N]; int main() {
std:: cin >> n >> m >> k;
for(int i = 1; i <= n; i ++) {
std:: cin >> Sum[i];
Sum[i] += Sum[i - 1];
}
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= k; j ++) {
if(i - m + 1 > 0) f[i][j] = f[i - m][j - 1] + Sum[i] - Sum[i - m];
f[i][j] = std:: max(f[i - 1][j], f[i][j]);
}
}
std:: cout << f[n][k];
return 0;
}

51nod 1354

给出序列 \(a\) 和一个整数 \(k\)

求子序列的乘积是 \(k\) 的倍数的方案数

\(f_{i, j}\) 表示前 \(i\) 个数,乘积是 \(j\) 的方案数

\(f_{i, j} = f_{i - 1, \frac{j}{a_{i - 1}}} + f_{i - 1, j}\)

由于 \(k\) 很大

显然单纯的数组是无法完成的

这里可以使用 \(map\), 通过遍历完成

#include <bits/stdc++.h>

const int N = 1010, Mod = 1e9 + 7;

std:: map <int, int> Map[N];
int n, k, t;
int A[N]; int main() {
std:: cin >> t;
for(; t; t --) {
std:: cin >> n >> k;
Map[0].clear();
for(int i = 1; i <= n; i ++) {
std:: cin >> A[i];
Map[i].clear();
}
Map[0][k] = 1;
for(int i = 0; i < n; i ++)
for(std:: map <int, int> :: iterator it = Map[i].begin(); it != Map[i].end(); it ++) {
if(it-> first % A[i + 1] == 0)
(Map[i + 1][it-> first / A[i + 1]] += it-> second) %= Mod;
(Map[i + 1][it-> first] += it-> second) %= Mod;
}
std:: cout << Map[n][1] << "\n";
}
return 0;
}

openjudge 6047

\(w \times h\) 的蛋糕,切成 \(m\) 块

每刀可以将一块切成两块

求最小化的最大蛋糕面积

\(f_{i, j, k}\) 表示将 \(i \times j\) 的蛋糕切成 \(m\) 块时的最小化的最大蛋糕面积

枚举蛋糕的长和宽以及切成的块数

固定好后枚举长从哪里分割 \(h\) 以及分成的块数 \(p\)

\(f_{i, j, k} = min(f_{i, j, k}, max(f_{h, j, p}, f_{i - h, j, p}))\)

同理枚举列

\(f_{i, j, k} = min(f_{i, j, k}, max(f_{i, l, p}, f_{i, j - l, p}))\)

#include <bits/stdc++.h>

const int N = 25;

int f[N][N][N];

int main() {
int w, h, m;
while(std:: cin >> w >> h >> m) {
memset(f, 0, sizeof f);
if(w == 0 && h == 0 && m == 0) break;
for(int i = 1; i <= w; i ++)
for(int j = 1; j <= h; j ++)
f[i][j][1] = i * j;
for(int i = 1; i <= w; i ++)
for(int j = 1; j <= h; j ++)
for(int k = 2; k <= std:: min(i * j, m); k ++) {
f[i][j][k] = (1 << 30);
for(int H = 1; H < i; H ++)
for(int p = 1; p < k; p ++)
f[i][j][k] = std:: min(f[i][j][k], std:: max(f[H][j][p], f[i - H][j][k - p]));
for(int L = 1; L < j; L ++)
for(int p = 1; p < k; p ++)
f[i][j][k] = std:: min(f[i][j][k], std:: max(f[i][L][p], f[i][j - L][k - p]));
}
std:: cout << f[w][h][m] << "\n";
}
return 0;
}

dp * 3的更多相关文章

  1. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  2. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  3. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

  4. AEAI DP V3.6.0 升级说明,开源综合应用开发平台

    AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  6. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. px、dp和sp,这些单位有什么区别?

    DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...

  9. android px转换为dip/dp

    /** * 根据手机的分辨率从 dp 的单位 转成为 px(像素) */ public int dipTopx(Context context, float dpValue) { final floa ...

  10. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

随机推荐

  1. windows Git Bash 无法运行python文件的解决方法(转)

    https://blog.csdn.net/xie_0723/article/details/51958243

  2. Vue响应式变化

    Vue有一个很方便的特性就是Vue的双向绑定,即响应式变化,在Vue2.X版本中,Vue响应式变化靠的是Object.defineProperty方法实现的,但是这个方法有个问题,就是对数组的支持不全 ...

  3. java-websocket客户端 断线重连 注入Service问题

    java版客户端: 使用开源项目java-websocket, github地址: https://github.com/TooTallNate/Java-WebSocket github上有很多示例 ...

  4. 在论坛中出现的比较难的sql问题:23(随机填充问题)

    原文:在论坛中出现的比较难的sql问题:23(随机填充问题) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. 所以,觉得有必要记录下 ...

  5. C# 阿拉伯数字转换为中文数字/中文数字转换为阿拉伯数字

    项目中经常会格式化数据,转换数字的使用情况比较多,记录一下数字转换的方法! 如果需要转换为繁体中文,将数组里的汉字换成繁体中文即可. 1.阿拉伯数字转换为中文数字 /// <summary> ...

  6. 读取经纬度坐标并存储为字典格式,即key为ID,value为轨迹点

    示例数据: #格式为txt文本 ID,L,B 001,116.5154,45.1154 001,116.5160,45.1153 ... 002,xxx,xxx ... 目标:建立轨迹数据结构,即di ...

  7. php 5.6.36 安装mcrypt

    相关扩展安装步骤 libmcrypt downloadUrl:https://sourceforge.net/projects/mcrypt/files/MCrypt/ versionCode:2.5 ...

  8. js入门之字符串常用的方法

    一. 概念理解基本包装类型 1. 基本包装类型 三种基本包装类型 String var s = new String('123dddd'); Number Boolean 简单类型没有方法和属性 之所 ...

  9. Java 之 Properties类 属性集

    一.概述 java.util.Properties集合 extends Hashtable<k,v> implements Map<k,v> java.util.Propert ...

  10. flask-sqlalchemy使用及数据迁移

    flask-sqlalchemy是flask框架在sqlalchemy基础上改造的一个orm框架 现在有两个实体Article文章和Category分类 一个分类下可能有多篇文章 相关示例: 项目相关 ...