P4475 巧克力王国 k-d tree
思路:\(k-d\ tree\)
提交:2次
错因:\(query\)时有一个\(mx\)误写成\(mn\)窝太菜了。
题解:
先把\(k-d\ tree\)建出来,然后查询时判一下整个矩形是否整体\(or\)一部分\(or\)全都不 满足\(Ax+By<C\),来决定直接返回子树和,还是递归子树,还是返回\(0\)
#include<cstdio>
#include<iostream>
#include<algorithm>
#define ull unsigned long long
#define ll long long
#define R register ll
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[1<<15],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix;
if(ch==EOF) return EOF; do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=36||ch>=127);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=50010;
int n,m,rt,D,tot;
ll A,B,C;
struct P{int d[2],w;
inline bool operator <(const P& that) const {return d[D]<that.d[D];}
}p[N];
struct node {
int lson,rson,sz,mx[2],mn[2]; ll sum; P p;
#define ls (t[tr].lson)
#define rs (t[tr].rson)
#define sum(tr) (t[tr].sum)
#define mx(tr,i) (t[tr].mx[i])
#define mn(tr,i) (t[tr].mn[i])
#define P(tr,i) (t[tr].p.d[i])
#define vl(tr) (t[tr].p.w)
}t[N];
inline void upd(int tr) {
for(R i=0;i<=1;++i) {
mx(tr,i)=mn(tr,i)=P(tr,i);
if(ls) mx(tr,i)=max(mx(tr,i),mx(ls,i)),mn(tr,i)=min(mn(tr,i),mn(ls,i));
if(rs) mx(tr,i)=max(mx(tr,i),mx(rs,i)),mn(tr,i)=min(mn(tr,i),mn(rs,i));
} sum(tr)=sum(ls)+sum(rs)+vl(tr);
}
inline int build(int l,int r,int dim) {
if(l>r) return 0; R tr=++tot,md=l+r>>1;
D=dim,nth_element(p+l,p+md,p+r+1);
t[tr].p=p[md];
ls=build(l,md-1,dim^1),rs=build(md+1,r,dim^1);
upd(tr); return tr;
}
inline bool ck(int x,int y) {return A*x+B*y<C;}
inline ll query(int tr) { R cnt=0;
cnt+=ck(mn(tr,0),mn(tr,1)),cnt+=ck(mn(tr,0),mx(tr,1));
cnt+=ck(mx(tr,0),mn(tr,1)),cnt+=ck(mx(tr,0),mx(tr,1));
if(cnt==4) return sum(tr);
if(!cnt) return 0;
R ret=0; if(ck(P(tr,0),P(tr,1))) ret+=vl(tr);
if(ls) ret+=query(ls); if(rs) ret+=query(rs);
return ret;
}
inline void main() {
n=g(),m=g(); for(R i=1;i<=n;++i) p[i].d[0]=g(),p[i].d[1]=g(),p[i].w=g();
rt=build(1,n,0); for(R i=1;i<=m;++i) {
A=g(),B=g(),C=g(); printf("%lld\n",query(rt));
}
}
}
signed main() {
Luitaryi::main(); return 0;
}
2019.07.22
P4475 巧克力王国 k-d tree的更多相关文章
- 洛谷 P4475 巧克力王国 解题报告
P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 \(x\) 和 \( ...
- 洛谷P4475 巧克力王国
洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为 ...
- P4475 巧克力王国(KDTree)
传送门 首先可以把约束条件看成一条直线,然后每个巧克力看成一个点,求给定区域内的点权和 用KDTree,每次判断一下当前矩形是否整个都在里面或都在外面,是的话直接返回,否则的话递归 注意,必须该矩形四 ...
- p4475 巧克力王国
传送门 分析 我们多维护一个值,代表某个点子树中所有点的权值和 于是如果某个点它的min和max乘a(/b)的值小于范围则直接把整个子树都加进去 估价函数就是这个点的子树中的理论最小值 代码 #inc ...
- Bzoj2850 巧克力王国
Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 505 Solved: 204 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但 ...
- BZOJ2820 - 巧克力王国
原题链接 Description 给出个二维平面上的点,第个点为,权值为.接下来次询问,给出,求所有满足的点的权值和. Solution 对于这个点建一棵k-d树,子树维护一个子树和. 如果子树所代表 ...
- bzoj 2850 巧克力王国
bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...
- bzoj2850巧克力王国
巧克力王国 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 861 Solved: 325[Submit][Status][Discuss] Desc ...
- [bzoj2850]巧克力王国_KD-Tree
巧克力王国 bzoj-2850 题目大意:给出n块巧克力,每块巧克力都有自己的两个参数x和y和本身的价值val,询问:m个人,每个人有两个系数和一个限度a,b,和c.求所有ax+by<=c的巧克 ...
随机推荐
- time模块/datetime模块/calendar模块
time模块时间的表示形式时间戳:以整型或浮点型表示⼀个时间,该时间以秒为单位,这个时间是以1970年1⽉1⽇0时0分0秒开始计算的. 导入time import time 1.返回当前的时间戳 no ...
- TZOJ1294吃糖果
#include<stdio.h> int main() { ],mi,i,max,s; scanf("%d",&t); while(t--) { scanf( ...
- BZOJ4566 HAOI2016找相同字符(后缀自动机)
对第一个串建SAM,第二个串在上面跑,记录当前前缀匹配的最长后缀长度l,每次考虑当前前缀的贡献,对于当前所在节点显然是|right|*(l-len[fa]),而对于其parent树上所有祖先的贡献显然 ...
- 通俗化理解Spring3 IoC的原理和主要组件
♣什么是IoC? ♣通俗化理解IoC原理 ♣IoC好处 ♣工厂模式 ♣IoC的主要组件 ♣IoC的应用实例 ♣附:实例代码 1.什么是IoC(控制反转)? Spring3框架的核心是实现控制反转( ...
- jQuery.print.js
登录网址https://github.com/DoersGuild/jQuery.print,下载js文件,进行简单的配置即可使用啦! 配置参数你可以在调用打印方法时传入一些参数: $("# ...
- bat实现守护程序保证平台正常运行
1.systeminfo查看系统最近一次重启时间: 2.杀进程: :start taskkill /f /im "xx.exe" goto start "xx.exe&q ...
- 阿里云 ecs win2016 FileZilla Server
Windows Server 2016 下使用 FileZilla Server 安装搭建 FTP 服务 一.安装 Filezilla Server 下载最新版本的 Filezilla Server ...
- Ubuntu 其他命令
其他命令 目标 查找文件 find 软链接 ln 打包和压缩 tar 软件安装 apt-get 01. 查找文件 find 命令功能非常强大,通常用来在 特定的目录下 搜索 符合条件的文件 序号 命令 ...
- Ubuntu18.0 解决python虚拟环境中不同用户下或者python多版本环境中指定虚拟环境的使用问题
一. 不同用户下配置virtualenvwrapper的问题 问题描述: 安装virtualnev和virtualnevwrapper之后,在.bashrc进行virtualenvwrapper的相关 ...
- 论文笔记:Deformable ConvNets v2: More Deformable, Better Results
概要 MSRA在目标检测方向Beyond Regular Grid的方向上越走越远,又一篇大作推出,相比前作DCN v1在COCO上直接涨了超过5个点,简直不要太疯狂.文章的主要内容可大致归纳如下: ...