U5122 T2-power of 2

题目提供者胡昊

题目描述

是一个十分特殊的式子。

例如:

n=0时 =2

然而,太大了

所以,我们让对10007 取模

输入输出格式

输入格式:

n

输出格式:

% 10007

输入输出样例

输入样例#1:

2

输出样例#1:

16

说明

n<=1000000

/*
费马小定理.
2^p-1%p=1(p为质数).
so 2^p-1在%p的剩余系下为1.
so 在该系下p-1=0.
so 2^n=2^(n%(p-1)).
*/
#include<iostream>
#include<cstdio>
using namespace std;
int n,m;
int mi(int a,int b,int mod)
{
int tot=1;
while(b)
{
if(b&1) tot=(tot*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return tot;
}
int main()
{
scanf("%d",&n);
m=mi(2,n,10006);
printf("%d",mi(2,m,10007));
return 0;
}

洛谷 U5122 T2-power of 2(费马小定理)的更多相关文章

  1. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  2. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  3. 学习:费马小定理 & 欧拉定理

    费马小定理 描述 若\(p\)为素数,\(a\in Z\),则有\(a^p\equiv a\pmod p\).如果\(p\nmid a\),则有\(a^{p-1}\equiv 1\pmod p\). ...

  4. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  5. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  7. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  8. hdu6440 Dream 2018CCPC网络赛C 费马小定理+构造

    题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k&l ...

  9. 2019计蒜之道初赛第3场-阿里巴巴协助征战SARS 费马小定理降幂

    题目链接:https://nanti.jisuanke.com/t/38352 发现规律之后就是算ans=2^(n-1)+4^(n-1).但是注意到n十分大是一个长度为1e5的数字.要想办法降幂. 我 ...

随机推荐

  1. hdu 2066 Dijstra 堆优化

    嗯 有广搜的意思 #include<cstdio> #include<iostream> #include<queue> #include<vector> ...

  2. c# 图文添加文字斜水印 优化

    之前一篇给图片加水印的功能,加出来水印的图片位置有一点问题,并且如果图片分辨率有变动的话,水印会有层次不齐的问题. 目前只能优化到增加一条居中显示的斜水印,在不同分辨率不同大小的图片中,都能保证文字水 ...

  3. C#UDP异步通信

    using SetingDemo.LogHelp;using SetingDemo.SingleRowDeclare;using System;using System.Collections.Gen ...

  4. VBA学习资料分享-1

    近年来,人工智能的概念深入人心,许多企业也正逐步或已推行办公自动化,寻求人力时间成本的降低,从而提升效益.对企业来说,要完全使用人工智能将工作流程自动化恐怕是没那么容易的,可以的话成本也不低,所以使用 ...

  5. mbedtls 入门

    mbedtls 入门 https://segmentfault.com/a/1190000012007117 ARM mbedtls使开发人员可以非常轻松地在嵌入式产品中加入加密和SSL/TLS功能. ...

  6. TypeScript入门六:TypeScript的泛型

    泛型函数 泛型类 一.泛型函数 在泛型函数之前,先简单的描述一下泛型,将变量定义成泛型可以在使用变量时来决定它的类型.什么意思呢?假如现在有一个函数,可能出现参数和返回值出现多种情况的现象,只有在调用 ...

  7. TypeScript入门三:TypeScript函数类型

    TypeScript函数类型 TypeScript函数的参数 TypeScript函数的this与箭头函数 TypeScript函数重载 一.TypeScript函数类型 在上一篇博客中已经对声明Ty ...

  8. python编程中常见错误

    python编程培训中常见错误最后,我想谈谈使用更多python函数(数据类型.函数.模块.类等)时可能遇到的问题.由于篇幅有限,我们试图将其简化,特别是一些高级概念.有关更多详细信息,请阅读学习py ...

  9. for循环中的闭包

    // 问题1:判断下面一段代码运行的结果是什么? var data = [] for (var i = 0; i < 3; i++) { data[i] = function() { conso ...

  10. django-bootstrap4|django 加载popper.min.js失败

    1.现象 2.解决过程 2.1.右键查看网页源代码 在浏览器地址栏打开popper.min.js对应的URL,发现无法打开,这个地址是国外的,需要找一个可访问的地址替换. 2.2.找到URL在djan ...