U5122 T2-power of 2

题目提供者胡昊

题目描述

是一个十分特殊的式子。

例如:

n=0时 =2

然而,太大了

所以,我们让对10007 取模

输入输出格式

输入格式:

n

输出格式:

% 10007

输入输出样例

输入样例#1:

2

输出样例#1:

16

说明

n<=1000000

/*
费马小定理.
2^p-1%p=1(p为质数).
so 2^p-1在%p的剩余系下为1.
so 在该系下p-1=0.
so 2^n=2^(n%(p-1)).
*/
#include<iostream>
#include<cstdio>
using namespace std;
int n,m;
int mi(int a,int b,int mod)
{
int tot=1;
while(b)
{
if(b&1) tot=(tot*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return tot;
}
int main()
{
scanf("%d",&n);
m=mi(2,n,10006);
printf("%d",mi(2,m,10007));
return 0;
}

洛谷 U5122 T2-power of 2(费马小定理)的更多相关文章

  1. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  2. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  3. 学习:费马小定理 & 欧拉定理

    费马小定理 描述 若\(p\)为素数,\(a\in Z\),则有\(a^p\equiv a\pmod p\).如果\(p\nmid a\),则有\(a^{p-1}\equiv 1\pmod p\). ...

  4. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  5. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  7. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  8. hdu6440 Dream 2018CCPC网络赛C 费马小定理+构造

    题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k&l ...

  9. 2019计蒜之道初赛第3场-阿里巴巴协助征战SARS 费马小定理降幂

    题目链接:https://nanti.jisuanke.com/t/38352 发现规律之后就是算ans=2^(n-1)+4^(n-1).但是注意到n十分大是一个长度为1e5的数字.要想办法降幂. 我 ...

随机推荐

  1. TheSierpinskiFractal(POJ-1941)【递推】

    题意:用‘\’,'/','_'按照给定规则画出三角形 题目链接:https://vjudge.net/problem/POJ-1941 思路:题中的三角形生成规则是符合递推关系的,可以先手动完成第一个 ...

  2. Prime Number(CodeForces-359C)【快速幂/思维】

    题意:已知X,数组arr[n],求一个分式的分子与分母的最大公因数.分子为ΣX^arr[i],分母为X^Σarr[i],数组为不递减序列. 思路:比赛的时候以为想出了正确思路,WA掉了很多发,看了别人 ...

  3. golang之工厂模式

    说明: golang的结构体没有构造函数,通常可以使用工厂模式来解决这个问题 如果包里面的结构体变量首字母小写,引入后,不能直接使用,可以工厂模式解决: ch1.go package ch1 type ...

  4. pt-table-checksum和pt-table-sync使用

    pt-table-checksum和pt-table-sync使用 数据库版本:5.6.25 pt工具版本:2.2.14 主从关系一:不同机器同一端口 10.10.228.163:4306(rescs ...

  5. 第6章:使用Python监控Linux系统

    1.Python编写的监控工具 1).多功能系统资源统计工具dstat dstat是一个用Python编写的多功能系统资源统计工具,用来取代Linux下的vmstat,iostat,netstat和i ...

  6. Django ORM相关的一些操作

    一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 ...

  7. H-ui前端框架,后端模板

    http://www.h-ui.net/ H-ui前端框架系统是基于 HTML.CSS.JAVASCRIPT开发的轻量级web前端框架. H-ui是根据中国现阶段网站特性和程序员开发习惯,在boots ...

  8. 怎么处理sqlserver2017部署在winowsDocker上时区无法修改成功的方式,并且可以多创建新的容器调用简单的方式直接使用!

    在创建该容器的时候我们执行的语句中添加了一个 从图中所看到的内容,上海时区,按照正常流程一般都是可疑正常执行的,但最后事情并不是我们所想的那么简单. 我们进入对应的容器里面 ,执行语句之后查找对应的文 ...

  9. Windows 下 nvm, node, npm 的下载、安装与配置

    主要解决的问题 下载安装完 nvm 和 node 后,缺失 npm 文件 执行 jasmine 等命令时提示「不是内部或外部命令...」及全局变量的设置 下载与安装 一.nvm github 下载地址 ...

  10. BFC渲染机制

    BFC(block formatting context):块级格式化上下文(实际就是一个隔离罩) W3C CSS2.1 规范中的一个概念.它是页面中的一块渲染区域,并且有一套渲染规则,它决定了其子元 ...