题意

你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值。求方案数\(\bmod 10^9+7\)

\(h, w, m\leq 10^4,n\leq 10\)

题解

首先来考虑单独的一个矩形限制怎么做。假设矩形面积为\(s\),最大值为\(v\)

易得答案是\(v^{s}-(v-1)^{s}\),意思就是每个数随便选,然后减去所有数\(<v\)的方案

现在考虑\(n\)个限制,实际上把棋盘分成了\(O(2^n)\)个部分。注意这里,包含两个格子的矩形集合相同,则两个格子算一个部分,并不是按四连通来定义的。

那我们对于每一部分,假设有若干的矩形包含它,那这个部分能放的最大值是所有包含它的矩形的限制的最小值。

这就是说一个矩形限制,被分成若干部分,这些部分必须有一个取到最大值,就考虑状压DP

\(dp[i][S]\)表示前i个部分,\(S\)集合里的矩形已经被满足,方案数是多少。

设当前部分\(i\)的大小为\(sz[i]\),包含这个部分的矩形中限制恰好为当前部分限制\(v\)的矩形集合为\(cov[i]\),当前部分的限制为\(v\)

要取到最大值:

\(dp[i + 1][j] += dp[i][j]\times (v-1)^{sz[i]}\)

不取最大值:

\(dp[i + 1][j | cov[i]] += dp[i][j](v^{sz[i]} - (v-1)^{sz[i]})\)

然后就很暴力地做完了。

比较新奇的是每个部分实际面积的求法(我没见过),对于每个交集,原大小减去子集的实际面积大小

代码更加直观地展现我在说什么。

#include <algorithm>
#include <cstdio>
using namespace std; const int mo = 1e9 + 7;
const int N = 10; struct matrix {
int x1, y1, x2, y2, d;
void operator &= (const matrix &b) {
d = min(d, b.d);
x1 = max(x1, b.x1);
y1 = max(y1, b.y1);
x2 = min(x2, b.x2);
y2 = min(y2, b.y2);
if(x1 > x2 || y1 > y2) d = -1;
}
} a[N], b[1 << N];
int h, w, m, n, t, dp[1100][1 << N], cov[1 << N], sz[1 << N], st[1 << N], sum; void dfs(int u, matrix mat, int s) {
if(u == n) { b[s] = mat; return ; }
dfs(u + 1, mat, s); mat &= a[u];
dfs(u + 1, mat, s | (1 << u));
} int qpow(int a, int b) {
int ans = 1;
for(; b >= 1; b >>= 1, a = 1ll * a * a % mo)
if(b & 1) ans = 1ll * ans * a % mo;
return ans;
}
void chk(int &u) { u >= mo ? u -= mo : 0; } int main() {
int te; scanf("%d", &te);
while(te --) {
scanf("%d%d%d%d", &h, &w, &m, &n);
for(int i = 0; i < n; i ++)
scanf("%d%d%d%d%d", &a[i].x1, &a[i].y1, &a[i].x2, &a[i].y2, &a[i].d);
dfs(0, (matrix) {1, 1, h, w, m}, 0);
for(int i = 0; i < (1 << n); i ++) sz[i] = b[i].d == -1 ? 0 : (b[i].x2 - b[i].x1 + 1) * (b[i].y2 - b[i].y1 + 1);
for(int i = (1 << n) - 1; i >= 1; i --) {
sz[0] -= sz[i];
for(int j = (i - 1) & i; j; j = (j - 1) & i) sz[j] -= sz[i];
}
t = 0;
for(int i = 1; i < (1 << n); i ++) if(sz[i] >= 1) {
cov[i] = 0;
for(int j = 0; j < n; j ++) if((i >> j & 1) && a[j].d == b[i].d) cov[i] |= 1 << j;
}
for(int i = 1; i < (1 << n); i ++) if(sz[i] >= 1) st[++ t] = i;
for(int i = 0; i <= t; i ++) fill(dp[i], dp[i] + (1 << n), 0);
dp[0][0] = 1;
for(int i = 0; i < t; i ++) {
int nd = sz[st[i + 1]], up = b[st[i + 1]].d;
int t1 = qpow(up, nd), t2 = qpow(up - 1, nd);
for(int s = 0; s < (1 << n); s ++) if(dp[i][s]) {
chk(dp[i + 1][s] += 1ll * dp[i][s] * t2 % mo);
chk(dp[i + 1][s | cov[st[i + 1]]] += 1ll * dp[i][s] * (t1 - t2 + mo) % mo);
}
}
printf("%d\n", 1ll * qpow(m, sz[0]) * dp[t][(1 << n) - 1] % mo);
}
return 0;
}

「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」的更多相关文章

  1. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

  2. 「BZOJ 4565」「HAOI 2016」字符合并「区间状压DP」

    题意 给一个长度为\(n(\leq 300)\)的\(01\)串,每次可以把\(k(\leq 8)\)个相邻字符合并,得到新字符和一定分数,最大化最后的得分 题解 考虑设计dp:\(dp[S][i][ ...

  3. 「BZOJ 5161」最长上升子序列「状压DP」

    题意 求一个\(1\sim n\)的排列LIS的期望长度,\(n\leq 28\) 题解 考虑朴素的LIS:\(f[i] = min(f[j]) + 1\) 记\(mx[i]\)为\(f\)的前缀最大 ...

  4. ☆ [POJ2411] Mondriaan's Dream 「状压DP」

    传送门 >Here< 题意:用1*2的砖块铺满n*m的地板有几种方案 思路分析 状压经典题! 我们以$f[i][j]$作为状态,表示第i行之前全部填完并且第i行状态为j(状压)时的方案数. ...

  5. 「CF744C」Hongcow Buys a Deck of Cards「状压 DP」

    题意 你有\(n\)个物品,物品和硬币有\(A\),\(B\)两种类型,假设你有\(M\)个\(A\)物品和\(N\)个\(B\)物品 每一轮你可以选择获得\(A, B\)硬币各\(1\)个,或者(硬 ...

  6. BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)

    题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/probl ...

  7. BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】

    [题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...

  8. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  9. BZOJ.4145.[AMPPZ2014]The Prices(状压DP)

    BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f ...

随机推荐

  1. 【Python基础】09_Python中的元组

    1.元组的定义 Tuple (元组)与列表类似,元组的元素 不能修改 元组通常保存 不同类型 的数据 元组用()定义 info_tuple = ("张三", 18, 1.75) 定 ...

  2. [python]近日 用3种库 实现简单的窗口 的回顾~

    最近任务:利用python 实现以下4个窗口弹窗. 信息提示框 文本输入框(需在窗口消失后,返回 用户输入的值) 文件选择(需在窗口消失后, 返回 用户选择的文件名的全路径) 文件夹选择(需在窗口消失 ...

  3. MySQL Select语句的执行顺序

    源文章:How is a query executed in MySQL? 当执行SQL的Select查询语句时,SQL指令的执行顺序如下: FROM 子句 WHERE 子句 GROUP BY 子句 ...

  4. JS执行顺序问题

    JavaScript执行引擎并非一行一行地分析和执行程序,而是一段一段地分析执行的.而且在分析执行同一段代码中,定义式的函数语句会被提取出来优先执行.函数定义执行完后,才会按顺序执行其他代码. 先看看 ...

  5. JS基础_全局作用域

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. sqlserver错误状态码解释

    Code Error Message 0 操作成功完成. 1 功能错误. 2 系统找不到指定的文件. 3 系统找不到指定的路径. 4 系统无法打开文件. 5 拒绝访问. 6 句柄无效. 7 存储控制块 ...

  7. Windows 软件使用

    1.CMD 1. 查看端口对应进程 netstat -ano|findstr "443" 2.通过PID 查找对应进程 tasklist|findstr “<PID号> ...

  8. SQL学习——IN运算符

    IN的作用 IN运算符允许您在WHERE子句中指定多个值. IN运算符是多个OR条件的简写. IN的语法 SELECT column_name(s) FROM table_name WHERE col ...

  9. Android项目笔记整理(1)

    第二部分 工作项目中以及平时看视频.看书或者看博客时整理的个人觉得挺有用的笔记 1.Activity界面切换:   if(条件1){        setContentView(R.layout.ma ...

  10. Shell中比较判断

    一.shell判断数组中是否包含某个元素:ary=(1 2 3)a=2if [[ "${ary[@]}" =~ "$a" ]] ; then    echo & ...