pandas.Series.value_counts
pandas.Series.value_counts
Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
功能:返回包含唯一值计数的对象。结果对象将按降序排列,以便第一个元素是最常出现的元素。 不包括默认的NA值。
参数:normalize : boolean, default False 如果为True,则返回的对象将包含唯一值的相对频率。
sort : boolean, default True 按值排序
ascending : boolean, default False 按升序排序
bins : integer, optional 而不是数值计算,把它们分成半开放的箱子,一个方便的pd.cut,只适用于数字数据
dropna : boolean, default True 不包括NaN的数量。
返回:计数:Serise
Series 情况下
import numpy as np
import pandas as pd
from pandas import DataFrame
from pandas import Series
ss = Series(['Tokyo', 'Nagoya', 'Nagoya', 'Osaka', 'Tokyo', 'Tokyo'])
ss.value_counts() #value_counts 直接用来计算series里面相同数据出现的频率
Tokyo 3
Nagoya 2
Osaka 1
dtype: int64
- DataFrame 情况下
import numpy as np
import pandas as pd
from pandas import DataFrame
from pandas import Series
df=DataFrame({'a':['Tokyo','Osaka','Nagoya','Osaka','Tokyo','Tokyo'],'b':['Osaka','Osaka','Osaka','Tokyo','Tokyo','Tokyo']}) #DataFrame用来输入两列数据,同时value_counts将每列中相同的数据频率计算出来
print(df)
df:
a b
0 Tokyo Osaka
1 Osaka Osaka
2 Nagoya Osaka
3 Osaka Tokyo
4 Tokyo Tokyo
5 Tokyo Tokyo
df.apply(pd.value_counts)
a b
Nagoya 1 NaN #在b列中meiynagoya,因此是用NaN 表示。
Osaka 2 3.0
Tokyo 3 3.0
pandas.Series.value_counts的更多相关文章
- 2、pandas的value_counts()和describe()
一.value_counts pandas 的value_counts()函数可以对Series里面的每个值进行计数并且排序. value_counts是计数,统计所有非零元素的个数,默认以降序的方式 ...
- pandas计数 value_counts()
来自:曹骥 在pandas里面常用value_counts确认数据出现的频率. 1. Series 情况下: pandas 的 value_counts() 函数可以对Series里面的每个值进行计数 ...
- pandas Series的sort_values()方法
pandas Series的 sort_values() 方法能对Series进行排序,返回一个新的Series: s = pd.Series([np.nan, 1, 3, 10, 5]) 升序排列: ...
- pandas.Series
1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...
- pandas数组(pandas Series)-(5)apply方法自定义函数
有时候需要对 pandas Series 里的值进行一些操作,但是没有内置函数,这时候可以自己写一个函数,使用 pandas Series 的 apply 方法,可以对里面的每个值都调用这个函数,然后 ...
- pandas数组(pandas Series)-(4)NaN的处理
上一篇pandas数组(pandas Series)-(3)向量化运算里说到,将两个 pandas Series 进行向量化运算的时候,如果某个 key 索引只在其中一个 Series 里出现,计算的 ...
- pandas数组(pandas Series)-(3)向量化运算
这篇介绍下有index索引的pandas Series是如何进行向量化运算的: 1. index索引数组相同: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b' ...
- pandas数组(pandas Series)-(2)
pandas Series 比 numpy array 要强大很多,体现在很多方面 首先, pandas Series 有一些方法,比如: describe 方法可以给出 Series 的一些分析数据 ...
- python. pandas(series,dataframe,index) method test
python. pandas(series,dataframe,index,reindex,csv file read and write) method test import pandas as ...
随机推荐
- ONNX源码安装
ONNX是facebook提出的一个 Open Neural Network Exchange协议,能够让训练好的模型在不同的框架间进行交互. ONNX的安装相对来说不是特别麻烦,麻烦的是其依赖库的安 ...
- Java高并发程序设计学习笔记(四):无锁
转自:https://blog.csdn.net/dataiyangu/article/details/86440836#1__3 1. 无锁类的原理详解简介:1.1. CAS1.2. CPU指令2. ...
- shell脚本视频学习1
一.知识点:变量,参数传递 练习1:使用shell脚本,输出当前所在的目录 练习2:计算/etc目录下有多少个文件,用shell脚本实现 ls -l--->数一下, ls -l|wc -l ( ...
- 分布式缓存Redis+Memcached经典面试题和答案
Redis相比memcached有哪些优势? (1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 (2) redis的速度比memcached快很多 ( ...
- Windows地址栏的妙用
主角: 它就是windows自带的一个小工具->地址栏,可以通过在任务栏右键选择工具栏-地址栏添加使用. 妙用: 一.打开文件 使用方法:D:\Temp(文件路径) 小提示:快速进入回收站:Re ...
- textarea回填数据显示自适应高度
queryTextArea(){ var textAll = document.getElementById('templaInner').querySelectorAll("textare ...
- 超简单!教你如何修改源列表(sources.list)来提高软件访问速度
因为Ubuntu官方的源地址不在国内,所以在国内的访问速度非常慢,比如:我们要下载或是更新软件那速度比蜗牛还慢.所以,我们需要改成国内的镜像服务器,这样,我们在下载或更新软件的时候就会很快了. 配置步 ...
- [ZOJ 4025] King of Karaoke
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5766 求两个序列的相对元素的差出现次数最多的,最低出现一次. AC代 ...
- 51Nod 1831 PN表
打出PN表来 发现合数除16,34,289都是赢 质数除2,17都是输 #include<bits/stdc++.h> using namespace std; bool prime(in ...
- usb发送字节