tensorflow实现线性回归总结
1、知识点
"""
模拟一个y = 0.7x+0.8的案例 报警:
1、initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02
解决方法:由于使用了tf.initialize_all_variables() 初始化变量,该方法已过时,使用tf.global_variables_initializer()就不会了 tensorboard查看数据:
1、收集变量信息
tf.summary.scalar()
tf.summary.histogram()
merge = tf.summary.merge_all()
2、创建事件机制
fileWriter = tf.summary.FileWriter(logdir='',graph=sess.graph)
3、在sess中运行并合并merge
summary = sess.run(merge)
4、在循环训练中将变量添加到事件中
fileWriter.add_summary(summary,i) #i为训练次数 保存并加载训练模型:
1、创建保存模型saver对象
saver = tf.train.Saver()
2、保存模型
saver.save(sess,'./ckpt/model')
3、利用保存的模型加载模型,变量初始值从保存模型读取
if os.path.exists('./ckpt/checkpoint'):
saver.restore(sess,'./ckpt/model') 创建变量域:
with tf.variable_scope("data"):
"""
2、代码
# coding = utf-8 import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' def myLinear():
"""
自实现线性回归
:return:
"""
with tf.variable_scope("data"):
#1、准备数据
x = tf.random_normal((100,1),mean=0.5,stddev=1,name='x')
y_true = tf.matmul(x,[[0.7]])+0.8 #矩阵相乘至少为2维 with tf.variable_scope("model"):
#2、初始化权重和偏置
weight = tf.Variable(tf.random_normal((1,1)),name='w')
bias = tf.Variable(0.0,name='b')
y_predict = tf.matmul(x,weight)+bias with tf.variable_scope("loss"):
#3、计算损失值
loss = tf.reduce_mean(tf.square(y_true-y_predict)) with tf.variable_scope("train"):
#4、梯度下降优化loss
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss) #初始化变量
init_op = tf.global_variables_initializer() ############收集变量信息存到tensorboard查看###############
#收集变量
tf.summary.scalar('losses',loss)#1维
tf.summary.histogram('weight',weight) #高维
tf.summary.histogram('bias', bias) # 高维
merged = tf.summary.merge_all() #将变量合并
######################################################### #####################保存并加载模型###############
saver = tf.train.Saver()
#################################################
#5、循环训练
with tf.Session() as sess:
sess.run(init_op) #运行是初始化变量
if os.path.exists('./ckpt/checkpoint'):
saver.restore(sess,'./ckpt/model') #建立事件机制
fileWriter = tf.summary.FileWriter(logdir='./tmp',graph=sess.graph)
print("初始化权重为:%f,偏置为:%f" %(weight.eval(),bias.eval()))
for i in range(501):
summary = sess.run(merged) # 运行并合并
fileWriter.add_summary(summary,i)
sess.run(train_op)
if i%10==0 :
print("第%d次训练权重为:%f,偏置为:%f" % (i,weight.eval(), bias.eval()))
saver.save(sess,'./ckpt/model')
return None if __name__ == '__main__':
myLinear()
3、代码
import tensorflow as tf
import csv
import numpy as np
import matplotlib.pyplot as plt
# 设置学习率
learning_rate = 0.01
# 设置训练次数
train_steps = 1000
with open('D:/Machine Learning/Data_wrangling/鲍鱼数据集.csv') as file:
reader = csv.reader(file)
a, b = [], []
for item in reader:
b.append(item[8])
del(item[8])
a.append(item)
file.close()
x_data = np.array(a)
y_data = np.array(b)
for i in range(len(x_data)):
y_data[i] = float(y_data[i])
for j in range(len(x_data[i])):
x_data[i][j] = float(x_data[i][j])
# 定义各影响因子的权重
weights = tf.Variable(np.ones([8,1]),dtype = tf.float32)
x_data_ = tf.placeholder(tf.float32, [None, 8])
y_data_ = tf.placeholder(tf.float32, [None, 1])
bias = tf.Variable(1.0, dtype = tf.float32)#定义偏差值
# 构建模型为:y_model = w1X1 + w2X2 + w3X3 + w4X4 + w5X5 + w6X6 + w7X7 + w8X8 + bias
y_model = tf.add(tf.matmul(x_data_ , weights), bias)
# 定义损失函数
loss = tf.reduce_mean(tf.pow((y_model - y_data_), 2))
#训练目标为损失值最小,学习率为0.01
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print("Start training!")
lo = []
sample = np.arange(train_steps)
for i in range(train_steps):
for (x,y) in zip(x_data, y_data):
z1 = x.reshape(1,8)
z2 = y.reshape(1,1)
sess.run(train_op, feed_dict = {x_data_ : z1, y_data_ : z2})
l = sess.run(loss, feed_dict = {x_data_ : z1, y_data_ : z2})
lo.append(l)
print(weights.eval(sess))
print(bias.eval(sess))
# 绘制训练损失变化图
plt.plot(sample, lo, marker="*", linewidth=1, linestyle="--", color="red")
plt.title("The variation of the loss")
plt.xlabel("Sampling Point")
plt.ylabel("Loss")
plt.grid(True)
plt.show()
tensorflow实现线性回归总结的更多相关文章
- tensorflow实现线性回归、以及模型保存与加载
内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建 ...
- TensorFlow简单线性回归
TensorFlow简单线性回归 将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.e ...
- 深度学习入门实战(二)-用TensorFlow训练线性回归
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...
- 利用TensorFlow实现线性回归模型
准备数据: import numpy as np import tensorflow as tf import matplotlib.pylot as plt # 随机生成1000个点,围绕在y=0. ...
- 如何用TensorFlow实现线性回归
环境Anaconda 废话不多说,关键看代码 import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' tf.a ...
- TensorFlow多元线性回归实现
多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 appe ...
- TensorFlow实现线性回归模型代码
模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as ...
- 学习TensorFlow,线性回归模型
学习TensorFlow,在MNIST数据集上建立softmax回归模型并测试 一.代码 <span style="font-size:18px;">from tens ...
- tensorflow 学习1——tensorflow 做线性回归
. 首先 Numpy: Numpy是Python的科学计算库,提供矩阵运算. 想想list已经提供了矩阵的形式,为啥要用Numpy,因为numpy提供了更多的函数. 使用numpy,首先要导入nump ...
随机推荐
- selenium:能够模拟人类打开浏览器的爬虫利器
介绍 selenium相当于是一个机器人,可以模拟人类登陆浏览器的行为,比如点击.填充数据.删除cookie等等.Chromedriver是一个驱动Chrome的程序,使用它才可以驱动浏览器,其实Ch ...
- 【原创】马哥 文本三剑客之awk
命令 awk 全称: man搜索: 简述 基本用法 选项 用法与实验 print 打印 (1)(2)(3) 变量 1.内建变量 FS与OFS RS与ORS NR与FNR NF ARGC与ARGC 2. ...
- three.js之创建一条直线
<!DOCTYPE html> <html> <head> <meta charset=utf-8> <title>My first thr ...
- 7.控制计划任务crontab命令
at 命令是针对仅运行一次的任务,循环运行的例行性计划任务,linux系统则是由 cron (crond) 这个系统服务来控制的Linux 系统上面原本就有非常多的计划 性工作,因此这个系统服务是默认 ...
- 关于C++跨平台
问题:C++是怎么跨平台的呢? 答: 因为支持C++语言的各个平台的架构不同(比如CPU能够处理的指令集不一样),所以一份C++源代码要想在另一个操作系统平台上执行,就必须用该平台相对应的C++代码编 ...
- opencv,用摄像头识别贴片元件的定位和元件的角度(转载)
经过半个月学习opencv有点小成果,用摄像头识别贴片元件的定位和元件的角度(转载) (2013-04-17 16:00:22) 转载▼ 分类: 学习笔记 先说一下开源的opencv真是一件伟大的 ...
- 给移动硬盘装win10,知道这些就足够了
随着制造工业的不断发展,储存介质逐渐廉价化,以某猫和某狗为代表的电商平台上都能轻松买到大容量的原装移动硬盘.如果工厂的产品还不能满足你的要求,那么DIY是一个不错的选择,可以选择购买移动硬盘盒(2.5 ...
- 8.CNN应用于手写字识别
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.mode ...
- H265码流格式
一.H265码流格式 VPS:视频参数集,用于传输视频分级信息,有利于兼容标准在可分级视频编码或多视点视频的扩展. NALU header定义: NALU header(){ Descriptor f ...
- string::substr
string substr (size_t pos = 0, size_t len = npos) const; #include <iostream> #include <stri ...