1038 Recover the Smallest Number (30 分)
 

Given a collection of number segments, you are supposed to recover the smallest number from them. For example, given { 32, 321, 3214, 0229, 87 }, we can recover many numbers such like 32-321-3214-0229-87 or 0229-32-87-321-3214 with respect to different orders of combinations of these segments, and the smallest number is 0229-321-3214-32-87.

Input Specification:

Each input file contains one test case. Each case gives a positive integer N (≤) followed by N number segments. Each segment contains a non-negative integer of no more than 8 digits. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the smallest number in one line. Notice that the first digit must not be zero.

Sample Input:

5 32 321 3214 0229 87

Sample Output:

22932132143287

题意:

给一些字符串,求它们拼接起来构成最小数字的方式

题解:

必须保证两个字符串构成的数字是最小的才行,所以cmp函数写成return a + b < b + a;的形式,保证它排列按照能够组成的最小数字的形式排列。没有想到,但是我意识到了直接比较a<b是不行的,还自己写了这个,发现值只得了26分,最后想不出来看题解,有一种原来如此的感觉。1035,1036,1037,1038这一套都较为简单,就是要注意细节。

/*bool cmp(string x,string y){
if(x.length()==y.length()){
return x<y;
}else{
string a,b;
a=x;
b=y;
while((a.length()<b.length())) a+=x[0];
while((a.length()>b.length())) b+=y[0];
return a<b;
}
}*/

最好和这道题一起看,觉得挺有意思UVA - 11729 Commando War
     一道看起来很简单,写起来有点痛苦,最后解法比较有趣的题目。据说是一道面试题的改编。
     题目给你一些数字的片段(number segments),所以应当用string存储而不是int,希望拼接之后能拼出的最小的数字,这是一道很神奇的题目,我分类讨论分了很多,最后突然发现它的最终解法无比简洁。
     其实就是一个序的关系,所有的组合有n!种,(像"所谓组出最小数其实是获得字典序最小的拼接方式"这种废话我就不说了)。假设我们获得了其中的一个组合,然后又两个相邻的数字片段a,b。然后我们就要想,把a和b交换能不能使整个序列变小呢?这个问题的其实等价于b+a 是否小于a+b(此处"+"为连接符),也就是说对于这样一个序列,如果某两个相邻的元素之间发生交换可以使得整个序列的值变小,我们就应该坚决的交换啊,所以这里定义一个新的序,用<<来表示,若a+b < b + a 则a应当在b前面,即a << b。然后呢,这种序是满足传递性的若a<<b ,b << c,则a<<c,所以迭代到最后,我们就会获得一个任何两个相邻元素都不能交换的局面,也就是所谓的答案。
     这样一来我们的算法就有了,比较每两个相邻的元素,如果交换可以使得整个序列变大,就交换之,直到最后没有任何两个值之间能进行交换,啊,这不就是传说中的Bubble_Sort吗,真是一个令人激动的结论啊。对序列按照之前定义的序进行排序,如此就好了。

注意点:

因为字符串可能前面有0,这些要移除掉(用s.erase(s.begin())就可以了~嗯~string如此神奇~~)。输出拼接后的字符串即可。
注意:如果移出了0之后发现s.length() == 0了,说明这个数是0,那么要特别地输出这个0,否则会什么都不输出~

AC代码:

#include<bits/stdc++.h>
using namespace std;
int n;
string a[];
bool cmp(string x,string y){
return x+y<y+x;
}
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
}
sort(a+,a++n,cmp);
string s="";
for(int i=;i<=n;i++){
s+=a[i];
}
while(s[]==''){
s.erase(s.begin());
}
if(s.size()) cout<<s;
else cout<<"";
return ;
}

PAT 甲级 1038 Recover the Smallest Number (30 分)(思维题,贪心)的更多相关文章

  1. pat 甲级 1038. Recover the Smallest Number (30)

    1038. Recover the Smallest Number (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  2. PAT 甲级 1038 Recover the Smallest Number

    https://pintia.cn/problem-sets/994805342720868352/problems/994805449625288704 Given a collection of ...

  3. PAT Advanced 1038 Recover the Smallest Number (30) [贪⼼算法]

    题目 Given a collection of number segments, you are supposed to recover the smallest number from them. ...

  4. PAT 1038 Recover the Smallest Number (30分) string巧排序

    题目 Given a collection of number segments, you are supposed to recover the smallest number from them. ...

  5. 1038 Recover the Smallest Number (30分)(贪心)

    Given a collection of number segments, you are supposed to recover the smallest number from them. Fo ...

  6. 【PAT甲级】1038 Recover the Smallest Number (30 分)

    题意: 输入一个正整数N(<=10000),接下来输入N个字符串,每个字符串包括至多8个字符,均为数字0~9.输出由这些字符串连接而成的最小数字(不输出前导零). trick: 数据点0只包含没 ...

  7. 1038. Recover the Smallest Number (30)

    题目链接:http://www.patest.cn/contests/pat-a-practise/1038 题目: 1038. Recover the Smallest Number (30) 时间 ...

  8. PAT甲1038 Recover the smallest number

    1038 Recover the Smallest Number (30 分) Given a collection of number segments, you are supposed to r ...

  9. 1038. Recover the Smallest Number (30) - 字符串排序

    题目例如以下: Given a collection of number segments, you are supposed to recover the smallest number from ...

随机推荐

  1. python基础--文件控制

    读写文件是最常见的IO操作.Python内置了读写文件的函数,用法和C是兼容的. 读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘, ...

  2. P2P system: Introduction

    P2P system : peer-to-peer system 一些流行的P2P system: Napster, Gnutella 我们为什么研究P2P system 大型的分布式系统有成千上万个 ...

  3. BZOJ1209 最佳包裹 (三维凸包 增量法)

    题意 求三维凸包的表面积. N≤100N\le100N≤100 题解 暴力往当前的凸包里加点.O(n2)O(n^2)O(n2).题解详见大佬博客 扰动函数shakeshakeshake是为了避免四点共 ...

  4. MD5加密的引用

    使用MD5 加密时 需要在后台代码中添加using System.Security.Cryptography; 引用 //MD5加密密码 byte[] a = MD5.Create().Compute ...

  5. MongoDB 集合与文档操作

    一.创建DB 1.查看DB >show dbs 2.创建DB >use mydb 3.查看当前DB >db 4.删除DB >use mydb >db.dropDataba ...

  6. 005_Python3 运算符

    什么是运算符? 本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. Python语言支持以下类型的运算 ...

  7. springboot与jdk1.6结合使用需要注意的地方

    问题描述:官方文档,默认Spring boot 1.3.5 要求 Java7版本,而当前项目要求 Java6,而且在idea工具中创建项目时,如果采用选项“Spring Initializr”来创建工 ...

  8. 数据结构实验之图论九:最小生成树 (SDUT 2144)

    #include<bits/stdc++.h> using namespace std; typedef long long ll; struct node { int s, e; int ...

  9. JRebel for IntelliJ激活

    好久没用jrebel了,跟前端进行项目联调总是有些许改动,还是热部署方便. 目前用的idea版本:IntelliJ IDEA 2019.2 JRebel插件版本:JRebel for IntelliJ ...

  10. zabbix(4)数据库表分区优化

    一.zabbix 数据库存储 zabbix-server将采集到的数据存储在数据库(mysql.oracle等),而数据存储的大小与每秒处理的数量量有关,因此数据存储取决于以下两个因数: (1)Req ...