cf

luogu

首先每个点到最远点的距离可以预处理出来,这个距离显然是这个点到树直径两端点的最大值.把那个距离记为\(d_i\),然后从小到大枚举\(d_i\),并强制它为最大的\(d_i\),那么前面\(d_j\)更小的,满足\(d_i-d_j\le L\)的点都可以被计入答案,那么就可以维护一些点的连通情况,支持加点删点,以及维护每个连通块大小,lct即可

考虑发掘其他性质,因为一个点的最远点一定是直径两端点之一,那么把直径上中点作为根,在直径一半边的所有点的最远点都是另一侧的直径端点,并且越往子树走,这个距离会越大.所以如果从大到小枚举最小的\(d_i\),那么当一个满足\(d_j-d_i>L\)的点\(j\)被删掉时,在它子树内的点会被先删掉,所以删它的时候他就是个叶子.那么考虑直接并查集维护,删点是直接给对应并查集大小\(-1\)即可

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=1e5+10;
LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],w[N<<1],hd[N],tot=1;
void add(int x,int y,int z)
{
++tot,to[tot]=y,nt[tot]=hd[x],w[tot]=z,hd[x]=tot;
++tot,to[tot]=x,nt[tot]=hd[y],w[tot]=z,hd[y]=tot;
}
int n,ff[N],sz[N],rt,sq[N];
int findf(int x){return ff[x]==x?x:ff[x]=findf(ff[x]);}
LL ds[N],mx;
bool cmp(int aa,int bb){return ds[aa]>ds[bb];}
void dfs(int x,int ffa,LL de)
{
ds[x]=max(ds[x],de);
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==ffa) continue;
dfs(y,x,de+w[i]);
}
if(mx<de) mx=de,rt=x;
} int main()
{
////////QWQWQ
n=rd();
for(int i=1;i<n;++i)
{
int x=rd(),y=rd(),z=rd();
add(x,y,z);
}
mx=0,dfs(1,0,0);
int r2=rt;
mx=0,dfs(r2,0,0);
dfs(rt,0,0);
for(int i=1;i<=n;++i) sq[i]=i;
sort(sq+1,sq+n+1,cmp);
int q=rd();
while(q--)
{
LL lm=rd();
for(int i=1;i<=n;++i) ff[i]=i,sz[i]=1;
int ans=0;
for(int i=1,j=1;i<=n;++i)
{
int x=sq[i];
while(ds[sq[j]]-ds[x]>lm)
--sz[findf(sq[j])],++j;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(ds[y]>=ds[x]&&findf(y)!=findf(x))
sz[findf(x)]+=sz[findf(y)],ff[findf(y)]=findf(x);
}
ans=max(ans,sz[findf(x)]);
}
printf("%d\n",ans);
}
return 0;
}

CF516D Drazil and Morning Exercise的更多相关文章

  1. CF516D Drazil and Morning Exercise【并查集,结论】

    题目描述:一棵\(n\)个点的树,设\(d(u)=\max_{v\in V}\text{dis}(u,v)\),每次询问一个数\(l\),求一个最大的联通子图\(L\),使得\(\forall u,v ...

  2. 「CF516D」 Drazil and Morning Exercise

    「CF516D」 Drazil and Morning Exercise 传送门 这个 \(f_i\) 显然可以通过树形 \(\texttt{DP}\) 直接求. 然后看到这种差值问题感觉就可以二分转 ...

  3. 【CF516D】Drazil and Morning Exercise

    题目 首先我们知道,在树上距离一个点最远的点一定是直径的两个端点之一 首先两遍\(\rm dfs\)把直径求出来,定义\(d(u)\)表示点\(u\)距离其最远点的距离,有了直径我们就能求出\(d\) ...

  4. 【Cf #292 D】Drazil and Morning Exercise(树的直径,树上差分)

    有一个经典的问题存在于这个子问题里,就是求出每个点到其他点的最远距离. 这个问题和树的直径有很大的关系,因为事实上距离每个点最远的点一定是直径的两个端点.所以我们可以很容易地进行$3$遍$Dfs$就可 ...

  5. 516D Drazil and Morning Exercise

    分析 求出直径和最远距离d 之后我们以直径中点为根 发现父亲的d肯定不小于儿子的d 于是从下往上启发式合并维护与子树根的值相差L内的个数即可 代码 #include<bits/stdc++.h& ...

  6. Codeforces 516D - Drazil and Morning Exercise(树的直径+并查集)

    Codeforces 题目传送门 & 洛谷题目传送门 这是一道 jxd 的作业题,感觉难度不是特别大(虽然我并没有自己独立 AC,不过也可能是省选结束了我的脑子也没了罢(((,就随便写写罢 u ...

  7. IOI2020 国家集训队作业 泛做

    题号 题目名称 rating 算法 完成情况 CF504E Misha and LCP on Tree CF505E Mr.Kitayuta vs. Bamboos CF506E Mr.Kitayut ...

  8. MIT 6.828 JOS学习笔记12 Exercise 1.9

    Lab 1中Exercise 9的解答报告 Exercise 1.9: 判断一下操作系统内核是从哪条指令开始初始化它的堆栈空间的,以及这个堆栈坐落在内存的哪个地方?内核是如何给它的堆栈保留一块内存空间 ...

  9. MIT 6.828 JOS学习笔记13 Exercise 1.10

    Lab 1 Exercise 10 为了能够更好的了解在x86上的C程序调用过程的细节,我们首先找到在obj/kern/kern.asm中test_backtrace子程序的地址, 设置断点,并且探讨 ...

随机推荐

  1. mac 安装laravel

    安装laravel之前先安装composer 使用 curl 指令下载: curl -sS https://getcomposer.org/installer | php 或是沒有安裝 curl ,也 ...

  2. 操作系统 | 结合 CPU 理解一行 Java 代码是怎么执行的

    根据冯·诺依曼思想,计算机采用二进制作为数制基础,必须包含:运算器.控制器.存储设备,以及输入输出设备,如下图所示. 我们先来分析 CPU 的工作原理,现代 CPU 芯片中大都集成了,控制单元,运算单 ...

  3. JVM | JVM的核心技术

    说到JVM,很多工作多年的老铁,可能就有点发憷了,因为搬砖多年,一直使用java这个工具,对于JVM没有了解过,有句话面试造航母,上班拧螺丝,要啥自行车啊,知道如何搬砖就可以了,为啥要懂这么多,如果你 ...

  4. instanceof 实现

    A instanceof B // 实现 instanceof function instance(a, b) { const proto = a.__proto__; // eslint-disab ...

  5. [Python]使用pytest进行单元测试

    安装pytest pipenv install pytest 验证安装的版本: pytest --version This , imported /site-packages/pytest.py 接下 ...

  6. AOP获取方法注解实现动态切换数据源

    AOP获取方法注解实现动态切换数据源(以下方式尚未经过测试,仅提供思路) ------ 自定义一个用于切换数据源的注解: package com.xxx.annotation; import org. ...

  7. 什么是APJ与使用Spring Data JPA 基于Hibernate

    目录结构 首先在Maven项目中添加依赖包 <!-- https://mvnrepository.com/artifact/org.springframework.data/ spring-da ...

  8. Linux Shell 自动备份脚本

    写一个使用shell脚本增量备份系统文件,顺便复习一下shell脚本相关的命令,这个脚本可以根据自己的需求来备份不同的文件或者文件夹,进行完整备份和增量备份. 参考的网址:http://blog.51 ...

  9. IIS 7 实现http跳转https 重定向方法

    官网的域名申请了一个SSL加密,导致原来的http无法访问了,网上找了一下解决方案,https://www.cnblogs.com/wer-ltm/p/10190535.html  按照这个方法进行了 ...

  10. 使用python装饰器计算函数运行时间的实例

    使用python装饰器计算函数运行时间的实例 装饰器在python里面有很重要的作用, 如果能够熟练使用,将会大大的提高工作效率 今天就来见识一下 python 装饰器,到底是怎么工作的. 本文主要是 ...