机器学习笔记——k-近邻算法(一)简单代码
一
import numpy as np
##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1] for i in dis[:K]])) 二
#带权投票
import numpy as np ##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1]/i[0] for i in dis[:K]])) 三
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.mean([i[-1] for i in dis[:K]]) 四
#带权回归
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
fenzi = sum([i[-1]/i[0] for i in dis[:K]])
fenmu = sum([1/i[0] for i in dis[:K]])
fenzi/fenmu
机器学习笔记——k-近邻算法(一)简单代码的更多相关文章
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 【机器学习】k近邻算法(kNN)
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...
- 机器学习之K近邻算法
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...
- 《机器学习实战》读书笔记—k近邻算法c语言实现(win下)
#include <stdio.h> #include <io.h> #include <math.h> #include <stdlib.h> #de ...
- 机器学习实战-k近邻算法
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...
- 【机器学习】K近邻算法——多分类问题
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...
随机推荐
- WCF Windows基础通信
概述 WCF,Windows Communication Foundation ,Windows通信基础, 面向服务的架构,Service Orientation Architechture=SOP ...
- [唐胡璐]Selenium技巧- Prop.Properties配置测试应用的环境和其他配置项
prop.propertiesfile contains important info that needs to be changed before the test is run, such a ...
- FastDFS+Nginx+Module
1.安装libevent wget https://cloud.github.com/downloads/libevent/libevent/libevent-2.0.21-stable.tar.g ...
- 捕获错误并处理try-catch
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- learning express step(九)
router-level middleware works in the same way as application-level middleware, except it is bound to ...
- tree/pstree
tree yum install tree 不指定路径的话直接显示当前目录的结构 加上-L 表示只显示到指定的目录层级 tree -L 2 ./
- [Luogu] U18202 洞穴遇险
https://www.luogu.org/problemnew/show/U18202 暴力搜索预期得分3030分左右. 状压预期得分7070分左右. 考虑费用流,将剩余不稳定度和最小转为消除不稳定 ...
- ICEM-五通孔管
原视频下载地址:https://yunpan.cn/cqaQ2t5DrRcKa 访问密码 d111
- POI的XWPFTable的方法总结
1. void addNewCol(): 为该表中的每一行添加一个新列 2. void addRow(XWPFTableRow row): 向表中添加新行 3. boolean addRow(XWP ...
- @Configuration,@ConfigurationProperties,@EnableConfigurationProperties
@Configuration API: https://www.javadoc.io/doc/org.springframework/spring-context/5.0.7.RELEASE @Con ...