import numpy as np
##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1] for i in dis[:K]])) 二
#带权投票
import numpy as np ##初始化数据
T = [[3, 104, -1],
[2, 100, -1],
[1, 81, -1],
[101, 10, 1],
[99, 5, 1],
[98, 2, 1]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.sign(sum([i[-1]/i[0] for i in dis[:K]])) 三
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
np.mean([i[-1] for i in dis[:K]]) 四
#带权回归
import numpy as np ##初始化数据
T = [[3, 104, 98],
[2, 100, 93],
[1, 81, 95],
[101, 10, 16],
[99, 5, 8],
[98, 2, 7]]
##初始化待测样本
x = [18, 90]
##初始化邻居数
K = 5 ##初始化存储距离列表[[距离1,标签1],[距离2,标签2]....]
dis=[] ##循环每一个数据点,把计算结果放入dis
for i in T:
d = ((x[0]-i[0])**2+(x[1]-i[1])**2)**0.5
dis.append([d,i[-1]])
##对dis按照距离排序
dis.sort()
##将前K个票放入投票箱
fenzi = sum([i[-1]/i[0] for i in dis[:K]])
fenmu = sum([1/i[0] for i in dis[:K]])
fenzi/fenmu

机器学习笔记——k-近邻算法(一)简单代码的更多相关文章

  1. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  2. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  3. 【机器学习】k近邻算法(kNN)

    一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...

  4. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  5. R语言学习笔记—K近邻算法

    K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...

  6. 机器学习之K近邻算法

    K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...

  7. 机器学习2—K近邻算法学习笔记

    Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...

  8. 《机器学习实战》读书笔记—k近邻算法c语言实现(win下)

    #include <stdio.h> #include <io.h> #include <math.h> #include <stdlib.h> #de ...

  9. 机器学习实战-k近邻算法

    写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...

  10. 【机器学习】K近邻算法——多分类问题

    给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...

随机推荐

  1. setuptools 版本太旧

    第二是 setuptools 版本太旧,所以出现以下问题Command "python setup.py egg_info" failed with error code 1 in ...

  2. python高性能编程方法一

    python高性能编程方法一   阅读 Zen of Python,在Python解析器中输入 import this. 一个犀利的Python新手可能会注意到"解析"一词, 认为 ...

  3. node.js通过回调函数获取异步函数的返回结果

    html文件代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  4. [codeforces][dp]

    链接:https://ac.nowcoder.com/acm/problem/21314来源:牛客网 题目描述 牛牛正在打一场CF 比赛时间为T分钟,有N道题,可以在比赛时间内的任意时间提交代码 第i ...

  5. Interleaving String (DP)

    Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example, Given:s1 ...

  6. left

    left 语法: left: auto | <length> | <percentage> 默认值:auto 适用于:定位元素.即定义了 <' position '> ...

  7. JVM相关面试

    来源:老码农 ,lingsui.github.io/2018/03/30/JVM面试题/   1.你知道哪些或者你们线上使⽤什么GC策略?它有什么优势,适⽤于什么场景? 参考 触发JVM进行Full ...

  8. java线程安全与不安全的理解

    存在成员变量(全局变量)的类用于多线程时是不安全的,不安全体现在这个成员变量可能发生非原子性的操作,而变量定义在方法内也就是局部变量是线程安全的. 想想在使用struts1时,不推荐创建成员变量,因为 ...

  9. 和证书相关的文件格式: Pem, Pfx, Der

    Pem Pem是最常见的证书文件格式.常见文件扩展名为.pem. 其文件内容采用如下格式: -----BEGIN CERTIFICATE----- Base64编码的证书内容-----END CERT ...

  10. 关于在vue项目中使用wangEditor

    1,vue中安装wangEditor 使用的npm安装 npm install wangeditor --save 2,创建公用组件 在components中创建wangEnduit文件夹 组件内容为 ...