图是信息的最佳表示方式。在一个图中,有通过边(谓之“关系”)连接起来的节点(谓之“实体”)。想一想,你的Facebook社交网络是个什么样子的:以你为中心连接上你的朋友们,他们又以不同的方式相互联系。在表格中表示这些信息的方式是有些随意(或者不好的),社交关系并不是像一排排规矩的摆在桌子上的东西,而是像下图这样的:

Facebook 社交网络;金色的边你的社交关系;灰色的边是你的朋友之间的关系

预测节点属性

现在我们得到了Facebook社交网络的最佳表示,那么如何去更好的预测你朋友们的喜好呢?我们这里使用图卷积神经网络(Graph convolutional networks),GCN是一种新的深度学习架构,能够利用包含在数据以及数据之间关系中的信息。

来看一个例子,假设我们想要了解你的朋友们谁倾向于共和党派谁倾向于民主党派,我们将在Facebook 社交网络图上应用GCN,并将预测的“政治立场”这个节点属性分配给图中缺少标签的节点。

GCN网络有两个输入:首先需要列出你每个朋友的特征,包括母校、邮政编码、所属团体等等信息,很显然,这些信息是学习一个人政治倾向的特征;第二,GCN采用图结构的精简形式,这帮助GCN学习朋友的友谊是如何影响他们的政治立场的。

按理说,仅这两条信息就足以预测一个人的政治倾向了。传统的深度学习模型甚至不需要应用实体之间的关系来进行预测,它们只利用个人属性。但是通过在GCN中结合数据的属性以及结构,可以使预测更加强大。

GCN的输入:Jane和很多共和党人有联系,但是她也有自己的一些属性,比如教育、地理位置,很多Facebook团体成员,那她到底是共和党派还是民主党派呢?

GCN的应用十分简单。它们是分层操作的,可以将它们堆叠在一起,达到想要的深度。在每一层的内部,有三个特点:

第一 标准化的图结构;

第二 标准化的图结构乘以节点属性;

第三 我们将非线性函数应用于节点属性和权重;

一个图卷积层,敏锐的读者会注意到,由于核函数的平稳性,这是一个近似卷积算子

在应用中,额外添加dropout层,激活函数采用Leaky ReLU,损失函数采用softmax loss,如下图所示:

一个使用中间dropout层的双层图卷积神经网络,我发现leaky ReLU函数能够有助于缓解梯度消失。

我们来看一部分使用Tensorflow实现GCN层的代码,了解一下该网络设计的简单性。

一个基于TensorFlow实现的图卷积神经网络,使用ADAM优化器,softmax交叉熵损失函数。绿色部分是图卷积层的实现,注意它的简洁。

应用

上面的例子太简单,无法证明该问题的复杂性。下面,我们看一个真正的Facebook网络,不同政治倾向的颜色不同。

一个基于Facebook数据的网络,不同的颜色代表每个人不同的政治倾向,图卷积预测了10%的这些人的政治立场,其余的作为训练序列的一部分输入。

记住,GCN不在乎每个节点的输入数据,或者节点之间的关系是什么样的。我们可以任意使用数据,比如企业之间的金融交易数据和企业自身的财务状况信息,便可以使用GCN来告诉我们哪些交易具有欺诈性。建立一个企业的超级节点图,我们可以利用GCN找出洗钱团伙。

一个交易的超级节点图。这些组织中有没有洗钱圈?利用GCN找出违法分子。

我们可以将GCN应用到银行客户信用风险评估,根据客户的特征以及风险阈值找出哪些客户是不能审批贷款的。还可以利用历史银行数据。

10万节点银行客户数据集的子图。利用客户之间的关系以及每个客户的财务数据,我们可以评估哪些客户可以获得什么贷款的批准,并对照一些风险阈值进行验证。

利用数据的自然结构提高了机器学习的预测能力,因此认识到图的普遍性是非常重要的。每个企业每天都在处理很多数据,而这些数据非常适合用图结构来表示。在任何信息连接的情况下都会出现图相关的问题,任何有图的地方,背后都有惊人的价值等待被挖掘。

参考链接:

https://www.experoinc.com/post/node-classification-by-graph-convolutional-network

GCN入门理解的更多相关文章

  1. 动态规划初级 入门理解 C#代码

      using System; using System.Collections.Generic; using System.Linq; using System.Text; using Micros ...

  2. 最全面的图卷积网络GCN的理解和详细推导,都在这里了!

    目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral doma ...

  3. (转载)Java多线程入门理解

    转载出处http://blog.csdn.net/evankaka 写在前面的话:此文只能说是java多线程的一个入门,其实Java里头线程完全可以写一本书了,但是如果最基本的你都学掌握好,又怎么能更 ...

  4. 图卷积神经网络(GCN)入门

    图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展.不得不专门为GCN开一个新篇章,表示其重要程度.本文结合大量参考文献,从理论到实 ...

  5. GCN 入门

    参考链接: https://www.zhihu.com/question/54504471/answer/611222866 1 拉普拉斯矩阵 参考链接: http://bbs.cvmart.net/ ...

  6. docker基础入门理解

    本文简单的介绍了一下docker的一些优点,以及使用方法 1. 理解docker 1.1 docker是什么? 1.2 为什么要使用Docker? 2. docker安装 3. docker-容器,镜 ...

  7. 微信小程序简单入门理解

    简单的小程序示例结构: (一):理解小程序结构app.js,app.json,app.wxss ①app.js,app.json是小程序结构必要的部分,app.wxss可选择 ②app.js用于创建小 ...

  8. SVG 入门——理解viewport,viewbox,preserveAspectRatio

    工欲善其事必先利其器,没有真正搞懂SVG里的viewport,viewbox, preserveAspectRatio这三个属性,就很容易遇到坑,最近写项目用到svg这三个属性被我一眼就略过 ,后来发 ...

  9. MyBatis简单使用和入门理解

    本文记录第一次使用Mybatis时碰到的一些错误和简单理解,采用的示例是Eclipse中的JAVA工程,采用XML文件定义数据库连接. 可以使用Java JDBC API直接操作数据库,但使用框架会更 ...

随机推荐

  1. MySQL进阶8 分页查询(limit) - 【SQL查询语法执行顺序及大致结构】- 子查询的3个经典案例

    #进阶8 分页查询 /* 应用场景: 当要显示的数据,一页显示不全,需要分页提交sql请求 语法: select 查询列表 #7 from 表1 #执行顺序:#1 [join type join 表2 ...

  2. 一致性Hash算法(转载)

    原文地址http://blog.csdn.net/caigen1988/article/details/7708806   consistent hashing 算法早在 1997 年就在论文 Con ...

  3. ASP.Net模拟用户 System.Security.Principal

    一.概述 在实际的项目开发中,我们可能会需要调用一些非托管程序,而有些非托管程序需要有更高的身份权限才能正确执行.本文介绍了如何让IIS承载的ASP.NET网站以特定的账户执行,比如Administr ...

  4. 小程序setData数据量过大时候会对渲染有影响吗?

    datas:[ { id:1000, name: "帅哥", title: '...', b: '...', d: 0, f:0, .... }, { id:1001, name: ...

  5. Math.cbrt() Math.sqrt() Math.pow()

    Math.pow() 能实现 Math.cbrt() 和 Math.sqrt() 的功能,但并不完全相同. 1. Math.pow()和Math.cbrt()的区别 function isCube(m ...

  6. fckeditor实现ctrl+v粘贴word图片并上传

    tinymce是很优秀的一款富文本编辑器,可以去官网下载.https://www.tiny.cloud 这里分享的是它官网的一个收费插件powerpaste的旧版本源码,但也不影响功能使用. http ...

  7. Luogu [P3622] [APIO2007]动物园

    题目链接 比较费脑子的一道题 先说题目核心思想 : 状压dp 环的处理我们先不管. 我们设 dp[j][s] 表示 到达动物 j 且 [ j , j+5) 这五个动物状态为s时 最多能使多少小朋友开心 ...

  8. mac brew 使用教程

    brew services list                  #查看系统通过 brew 安装的服务 brew services cleanup               #清除已卸载无用的 ...

  9. hive的两种使用方式

    hive的两种使用方式 1,hive shell的方式 启动命令: bin/hive 2.beeline客户端方式 首先在一个机器上启动hive thrift服务 bin/hiveserver2 在其 ...

  10. 8月清北学堂培训 Day4

    今天上午是赵和旭老师的讲授~ 概率与期望 dp 概率 某个事件 A 发生的可能性的大小,称之为事件 A 的概率,记作 P ( A ) . 假设某事的所有可能结果有 n 种,每种结果都是等概率,事件 A ...