Codeforces 1237E. Balanced Binary Search Trees
这一题是真的坑人,时间空间都在鼓励你用 $NTT$ 优化 $dp$...(但是我并不会 $NTT$)
看到题目然后考虑树形 $dp$ ,设 $f[i][0/1]$ 表示 $i$ 个节点的树,根节点为奇数/偶数的方案数
然后发现对于 $f[i][0/1]$ 的所有方案,把节点编号同时加一个偶数后根节点奇偶性不变,把节点编号加一个奇数后根节点的奇偶性变了
那么就可以对每个 $f[i][0/1]$ 枚举左右子树转移了,因为确定总点数所以左子树点数就有一个范围,在那个范围内枚举子树大小 $j$
那么有转移 $f[i][0]=\sum f[j][1] \cdot f[i-j-1][1]$ ,$f[i][1]=\sum f[j][0] \cdot f[i-j-1][1]$
然后发现转移是卷积的形式,然后据说就可以 $NTT$ 优化什么的...但是我完全不会诶
然后推完发现并没有什么用就去看看神仙的提交记录(比赛的时候是可以看别人的提交结果的)

然后你感到一丝不妙,那些人怎么都是几十毫秒过的???再看看空间发现有些人甚至 $0kb$ ???

于是你赶紧把暴力打完把表打出来,发现大部分状态都是 $0$ ,只有少部分的结果是 $1$
然后你再输出一下方案为 $1$ 的各种状态,发现只有当节点数为 $1,2,4,5,9,10,20,21,41,42,84,85...$
然后就发现了规律,然后你就成功通过了这一题(当然那时我并没有过)
所以现在考虑一下怎么去证明这个东西,首先对于 $3$ 层的这种树只有当点数为 $4,5$ 时可以发现有唯一一种方案
首先显然的,对于这种树的根节点,它的左右儿子子树也必须是这种树
然后注意到对于 $n$ 个节点的这种树,根节点和 $n$ 号节点奇偶性相同(因为二叉搜索树的性质,$n$ 号节点必须是最右边的)
所以根节点的右子树的子树大小必定为偶数
然后又因为左右子树的深度必须一样,所以比 $4,5$ 个节点的这种树 多一层的这种树,它的左右儿子必须是 $4$ 或 $5$ 个节点
又因为之前证明的右儿子必须为偶数,那么多一层的这种树只有左儿子为 $4$ 右儿子为 $4$ ,和左儿子为 $5$ 右儿子为 $4$ 两种方案
那么每一层都只能靠少一层的那两种子树得到新的那两种树,所以证明完毕
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e6+;
int n;
int main()
{
n=read();
int now=;
while(now<=n)
{
if(now==n || now+==n) { printf("1\n"); return ; }
if(now&) now=(now+)++now;
else now=now++now;
}
printf("0\n");
return ;
}
Codeforces 1237E. Balanced Binary Search Trees的更多相关文章
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- CF1237E 【Balanced Binary Search Trees】
首先我们要注意到一个性质:由于根与右子树的根奇偶性相同,那么根的奇偶性与\(N\)相同 然后我们发现对于一个完美树,他的左右两个儿子都是完美树 也就是说,一颗完美树是由两棵完美树拼成的 注意到另一个性 ...
- Codeforces 1237E Perfect Balanced Binary Search Tree
题目链接 Observations 含有 $n$ 个点且 key(以下也称 key 为「权值」)是 1 到 $n$ 的 BST 具有下列性质: 若 $k$ 是一个非根叶子且是个左儿子,则 $k$ 的父 ...
- 并不对劲的CF1237D&E:Balanced Playlist and Binary Search Trees
CF1237D Balanced Playlist 题意 有一个长度为\(n\)(\(n\leq 10^5\))的循环播放歌单,每首歌有一个优秀值\(a_i\)(\(a_i\leq 10^9\)). ...
- Method for balancing binary search trees
Method for balancing a binary search tree. A computer implemented method for balancing a binary sear ...
- Optimal binary search trees
问题 该问题的实际应用 Suppose that we are designing a program to translate text from English to French. For ea ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 2 Unique Binary Search Trees II_Leetcode
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
随机推荐
- 5.使用Ribbon实现客户端侧负载均衡
Ribbon实现客户端侧负载均衡 5.1. Ribbon简介 Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法 ...
- Leetcode题目169.求众数(简单)
题目描述: 给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3] ...
- pip安装命令集合
先加速 使用清华大学镜像源(一定要用,会少很多坑) https://mirrors.tuna.tsinghua.edu.cn/help/alpine/ 超时加上参数 --default-timeou ...
- Beta冲刺(1/5)
队名:new game 组长博客:戳 作业博客:戳 组员情况 鲍子涵(队长) 过去两天完成了哪些任务 验收游戏素材 学习Unity 2D Animation系统 接下来的计划 制作游戏需要的人物动画 ...
- mysql中的utf8mb4、utf8mb4_unicode_ci、utf8mb4_general_ci的关系
mysql中的utf8mb4.utf8mb4_unicode_ci.utf8mb4_general_ci的关系 一.总结 一句话总结: utf8mb4是utf8的超集并完全兼容utf8,能够用四个字节 ...
- PHPStorm2017去掉函数参数提示
今天升级到 PHPStorm 2017.1 发现增加了好些新功能, 有个默认开启的参数名和类型提示功能, 虽然功能挺强大的, 不过我用不着, 还是关掉的好, 有同样需求的同学可以看看 例子比较特殊这么 ...
- rest-assured学习资料
rest-assured 使用指南 https://blog.csdn.net/wx19900503/article/details/54944841/
- Android蓝牙开发技术学习总结
Android开发,提供对蓝牙的通讯栈的支持,允许设别和其他的设备进行无线传输数据.应用程序层通过安卓API来调用蓝牙的相关功能,这些API使程序无线连接到蓝牙设备,并拥有P2P或者多端无线连接的特性 ...
- 重画GoogleClusterTrace数据
由于项目计划书写作需要,重画了Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, Joseph L. Hellerstein, Dynamic Heteroge ...
- VBA MD5加密算法(转)
) ) Private Function LShift(lValue, iShiftBits) Then LShift = lValue Exit Function Then Then LShift ...