【BZOJ4008】[HNOI2015]亚瑟王 期望
【BZOJ4008】[HNOI2015]亚瑟王
Description
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。
Input
输入文件的第一行包含一个整数 T,代表测试数据组数。
Output
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。建议输出10 位小数。
Sample Input
3 2
0.5000 2
0.3000 3
0.9000 1
Sample Output
HINT
一共有 13 种可能的情况:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,r;
double f[230][140],p[230],d[230],ans,pj;
void work()
{
scanf("%d%d",&n,&r);
memset(f,0,sizeof(f));
int i,j;
for(i=1;i<=n;i++) scanf("%lf%lf",&p[i],&d[i]);
f[0][r]=1;
ans=0;
for(i=0;i<n;i++)
{
pj=1;
for(j=0;j<=r;j++)
{
f[i+1][j]+=f[i][j]*pj;
if(j>0) f[i+1][j-1]+=f[i][j]*(1-pj);
ans+=f[i][j]*(1-pj)*d[i+1];
pj*=1-p[i+1];
}
}
printf("%.10lf\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--) work();
return 0;
}
【BZOJ4008】[HNOI2015]亚瑟王 期望的更多相关文章
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- BZOJ4008. [HNOI2015]亚瑟王 期望概率dp
看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...
- 概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...
- BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- BZOJ4008 : [HNOI2015]亚瑟王(期望dp)
题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...
- bzoj4008: [HNOI2015]亚瑟王【期望dp】
一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...
随机推荐
- rpm---linux软件安装与管理
linux的安装命令选项太多,整理一下,方便后期查找. 汇总: install: rpm -ivh 包全名 安装 upgrade: rpm -Uvh 包全名 升级 erase: rpm -e 包名 删 ...
- 用<forEach>遍历list集合时,提示我找不到对象的属性
<c:forEach items="${list}" var="item"> <tr> <td>${item.UserId} ...
- 移动端框架篇-控制父容器的滑屏框架-slip.js
设计滑屏框架的办法一般有2种 控制父容器法 控制子容器法 这个算是控制父容器法 通过控制父容器的transform: translateY或margin-top或top的值来上下滑动页面,每次的位移的 ...
- Pandas-数据聚合与分组运算
目录 图解"split-apply-combine" 数据的分类split: groupby() 以column进行分组 以index进行分组 分组遍历 数据的应用apply: a ...
- tyvj1014 乘法游戏
描述 乘法游戏是在一行牌上进行的.每一张牌包括了一个正整数.在每一个移动中,玩家拿出一张牌,得分是用它的数字乘以它左边和右边的数,所以不允许拿第1张和最后1张牌.最后一次移动后,这里只剩下两张牌. ...
- [Linux] 账户管理命令(二)
组管理 1)groupadd 用于添加一个用户组. 格式:groupadd [-g -o GID] GROUP 其中: GROUP:是要添加的组名 -g:用于指定 GID,默认为使用当前最大的 ...
- CF memsql Start[c]UP 2.0 A
CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...
- PHP正则表达式详解(三)
1.preg_match() :preg_match() 函数用于进行正则表达式匹配,成功返回 1 ,否则返回 0 . 语法:int preg_match( string pattern, strin ...
- Linux进程间通信(四):命名管道 mkfifo()、open()、read()、close()
在前一篇文章—— Linux进程间通信 -- 使用匿名管道 中,我们看到了如何使用匿名管道来在进程之间传递数据,同时也看到了这个方式的一个缺陷,就是这些进程都由一个共同的祖先进程启动,这给我们在不相关 ...
- iOS开发——UI进阶篇(十九)UISearchBar控件简介
最近用到搜索功能.总结一下 搜索,无疑可以使用UISearchBar控件! 那就先了解一下UISearchBar控件吧! UISearchBar控件就是要为你完成搜索功能的一个专用控件.它集成了很多你 ...