You are given a m x n 2D grid initialized with these three possible values.

  1. -1 - A wall or an obstacle.
  2. 0 - A gate.
  3. INF - Infinity means an empty room. We use the value 231 - 1 = 2147483647 to represent INF as you may assume that the distance to a gate is less than 2147483647.

Fill each empty room with the distance to its nearest gate. If it is impossible to reach a gate, it should be filled with INF.

For example, given the 2D grid:

INF  -1  0  INF
INF INF INF -1
INF -1 INF -1
0 -1 INF INF

After running your function, the 2D grid should be:

  3  -1   0   1
2 2 1 -1
1 -1 2 -1
0 -1 3 4

这道题类似一种迷宫问题,规定了 -1 表示墙,0表示门,让求每个点到门的最近的曼哈顿距离,这其实类似于求距离场 Distance Map 的问题,那么先考虑用 DFS 来解,思路是,搜索0的位置,每找到一个0,以其周围四个相邻点为起点,开始 DFS 遍历,并带入深度值1,如果遇到的值大于当前深度值,将位置值赋为当前深度值,并对当前点的四个相邻点开始DFS遍历,注意此时深度值需要加1,这样遍历完成后,所有的位置就被正确地更新了,参见代码如下:

解法一:

class Solution {
public:
void wallsAndGates(vector<vector<int>>& rooms) {
for (int i = ; i < rooms.size(); ++i) {
for (int j = ; j < rooms[i].size(); ++j) {
if (rooms[i][j] == ) dfs(rooms, i, j, );
}
}
}
void dfs(vector<vector<int>>& rooms, int i, int j, int val) {
if (i < || i >= rooms.size() || j < || j >= rooms[i].size() || rooms[i][j] < val) return;
rooms[i][j] = val;
dfs(rooms, i + , j, val + );
dfs(rooms, i - , j, val + );
dfs(rooms, i, j + , val + );
dfs(rooms, i, j - , val + );
}
};

那么下面再来看 BFS 的解法,需要借助 queue,首先把门的位置都排入 queue 中,然后开始循环,对于门位置的四个相邻点,判断其是否在矩阵范围内,并且位置值是否大于上一位置的值加1,如果满足这些条件,将当前位置赋为上一位置加1,并将次位置排入 queue 中,这样等 queue 中的元素遍历完了,所有位置的值就被正确地更新了,参见代码如下:

解法二:

class Solution {
public:
void wallsAndGates(vector<vector<int>>& rooms) {
queue<pair<int, int>> q;
vector<vector<int>> dirs{{, -}, {-, }, {, }, {, }};
for (int i = ; i < rooms.size(); ++i) {
for (int j = ; j < rooms[i].size(); ++j) {
if (rooms[i][j] == ) q.push({i, j});
}
}
while (!q.empty()) {
int i = q.front().first, j = q.front().second; q.pop();
for (int k = ; k < dirs.size(); ++k) {
int x = i + dirs[k][], y = j + dirs[k][];
if (x < || x >= rooms.size() || y < || y >= rooms[].size() || rooms[x][y] < rooms[i][j] + ) continue;
rooms[x][y] = rooms[i][j] + ;
q.push({x, y});
}
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/286

类似题目:

Surrounded Regions

Number of Islands

Shortest Distance from All Buildings

Robot Room Cleaner

Rotting Oranges

参考资料:

https://leetcode.com/problems/walls-and-gates/

https://leetcode.com/problems/walls-and-gates/discuss/72745/Java-BFS-Solution-O(mn)-Time

https://leetcode.com/problems/walls-and-gates/discuss/72746/My-short-java-solution-very-easy-to-understand

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 286. Walls and Gates 墙和门的更多相关文章

  1. [LeetCode] Walls and Gates 墙和门

    You are given a m x n 2D grid initialized with these three possible values. -1 - A wall or an obstac ...

  2. LeetCode 286. Walls and Gates

    原题链接在这里:https://leetcode.com/problems/walls-and-gates/ 题目: You are given a m x n 2D grid initialized ...

  3. 【LeetCode】286. Walls and Gates 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 日期 题目地址:https://leetcod ...

  4. 286. Walls and Gates

    题目: You are given a m x n 2D grid initialized with these three possible values. -1 - A wall or an ob ...

  5. [LeetCode] 286. Walls and Gates_Medium tag: BFS

    You are given a m x n 2D grid initialized with these three possible values. -1 - A wall or an obstac ...

  6. leetcode 542. 01 Matrix 、663. Walls and Gates(lintcode) 、773. Sliding Puzzle 、803. Shortest Distance from All Buildings

    542. 01 Matrix https://www.cnblogs.com/grandyang/p/6602288.html 将所有的1置为INT_MAX,然后用所有的0去更新原本位置为1的值. 最 ...

  7. [Locked] Walls and Gates

    Walls and Gates You are given a m x n 2D grid initialized with these three possible values. -1 - A w ...

  8. [Swift]LeetCode286. 墙和门 $ Walls and Gates

    You are given a m x n 2D grid initialized with these three possible values. -1 - A wall or an obstac ...

  9. LeetCode Walls and Gates

    原题链接在这里:https://leetcode.com/problems/walls-and-gates/ 题目: You are given a m x n 2D grid initialized ...

随机推荐

  1. 关于Pragma

    /** This is a introduction of how to use pragma. */ #pragma once /// This is used for include the he ...

  2. D3力布图绘制--节点间的多条关系连接线的方法(转)

    在项目中遇到这样的场景,在使用D3.js绘制力布图的过程中,需要在2个节点间绘制多条连接线,找到一个不错的算法,在此分享下. 效果图: HTML中要连接 <!DOCTYPE html> & ...

  3. pycharm报错:ImportError: libcusolver.so.8.0: cannot open shared object file: No such file or directory

    pycharm报错:ImportError: libcusolver.so.8.0: cannot open shared object file: No such file or directory ...

  4. 基于Vue + axios + WebApi + NPOI导出Excel文件

    一.前言 项目中前端采用的Element UI 框架, 远程数据请求,使用的是axios,后端接口框架采用的asp.net webapi,数据导出成Excel采用NPOI组件.其业务场景,主要是列表页 ...

  5. 2019-9-18-WPF-如何调试-binding

    原文:2019-9-18-WPF-如何调试-binding title author date CreateTime categories WPF 如何调试 binding lindexi 2019- ...

  6. MySQL 8.0.18安装教程(windows 64位)

    目录 1-先去官网下载点击的MySQL的下载​ 2-配置初始化的my.ini文件的文件3-初始化MySQL4-安装MySQL服务 + 启动MySQL 服务5-连接MySQL + 修改密码 * 第一项 ...

  7. Mysql EF Core 快速构建 Web Api

    (1)首先创建一个.net core web api web项目; (2)因为我们使用的是ef连接mysql数据库,通过NuGet安装MySql.Data.EntityFrameworkCore,以来 ...

  8. wpf 代码设置图片路径(后台和xamll)

    项目中经常使用背景图片,当一个小组共通开发时,路径的选择应该是在项目运行的固定文件夹下 此时,可用代码实现:pack://SiteOfOrigin:,,,/Images/Icons/HomePageB ...

  9. linux 进程通信之 守护进程

    守护进程(Daemon) Daemon(精灵)进程,是linux中的后台服务进程,通常独立于控制终端并且周期性地执行某种任务或等待处理某些发生的时间.一般采用以d结尾的名字.从下面的进程信息可以看出, ...

  10. MarkdownPad 2破解

    MarkdownPad 2 是一款较不错的Markdown编辑器,可快速将文本转换为美观的HTML/XHTML的网页格式代码,且操作方便,用户可以通过键盘快捷键和工具栏按钮来使用或者移除Markdow ...