综述

试题为常州集训2019SCDay2

得分\(100+30(0)+28\)


时之终结

问题描述

HZOJ1310

题解

构造题。

发现部分分有一档是 \(Y\) 是 \(2^x\) ,于是自然想到很多个三角形连到一起。

然后正解就是在这个基础上删边。

\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; #define int long long template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} int y,opt=2;
bool eps[1007]; bool deal(){
int bf=y,cnt=0;
while(1){
if(bf&1) return (bf==1);
++cnt;bf>>=1;++opt;
}
return 0;
} namespace Subtask_2{
void solve(){
printf("%lld %lld\n",opt,opt*(opt-1)/2);
for(int i=1;i<opt;i++){
for(int j=i+1;j<=opt;j++) printf("%lld %lld\n",i,j);
}
}
} namespace Subtask_3{
void solve(){
int bf=y;opt=2;int tmp=1;
while(bf){
eps[opt]=(bf&1);bf>>=1;
tmp+=(eps[opt]==0);++opt;
}
printf("%lld %lld\n",opt,opt*(opt-1)/2-tmp);
for(int i=1;i<opt;i++){
for(int j=i+1;j<=opt;j++){
if(j==opt&&!eps[i]) continue;
printf("%lld %lld\n",i,j);
}
}
}
} signed main(){
freopen("review.in","r",stdin);freopen("review.out","w",stdout);
read(y);
if(y==1){
puts("2 1");puts("1 2");
fclose(stdin);fclose(stdout);
return 0;
}
if(y==2){
puts("3 3");puts("1 2");puts("2 3");puts("1 3");
fclose(stdin);fclose(stdout);
return 0;
// 3 3 1 2 2 3 1 3
}
if(deal()) Subtask_2::solve();
else Subtask_3::solve();
return 0;
}

博士之时

问题描述

HZOJ1311

题解

想象它是肽链和肽环

正难则反

链只能倒过来,环随便转

注意长度相同的链、长度相同的环可以互换。

\(\mathrm{Code}\)

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=2e5+10;
const int M=5e5+10;
const int mod=1e9+7;
int Num,n,m1,m2,A,B,head[N],cnt,n0,n1,n2,n3,f[N][2],opt,g[N],fac[N],ans,num,tot,bin[N];bool d[N],w[N],vis[N],pd;//f链,g环
bool cc[20][20],dd[20][20];
struct edge{int nxt,to;}ed[M<<1];
inline void addedge(int x,int y){
ed[++cnt].to=y;ed[cnt].nxt=head[x];head[x]=cnt;
ed[++cnt].to=x;ed[cnt].nxt=head[y];head[y]=cnt;}
inline void Add(int &x,int y){x+=y;x-=x>=mod? mod:0;}
inline int MOD(int x){x-=x>=mod? mod:0;return x;}
inline int Minus(int x){x+=x<0? mod:0;return x;}
inline int fas(int x,int p){int res=1;while(p){if(p&1)res=1ll*res*x%mod;p>>=1;x=1ll*x*x%mod;}return res;}
inline void DFS(int u){
vis[u]=true;num++;int record=0;
for(register int i=head[u];i;i=ed[i].nxt){
int v=ed[i].to;if(vis[v]){record++;continue;}
DFS(v);
}
if(!ed[head[u]].nxt)opt=w[u];
if(record==2)pd=true;
}
int main(){
freopen("refrain.in","r",stdin);
freopen("refrain.out","w",stdout);
scanf("%d",&Num);
scanf("%d%d%d",&n,&m1,&m2);
for(register int i=1;i<=m1;i++){
scanf("%d%d",&A,&B);
d[A]=true;d[B]=true;addedge(A,B);
}
for(register int i=1;i<=m2;i++){
scanf("%d%d",&A,&B);
w[A]=true;w[B]=true;addedge(A,B);
}
fac[0]=1;for(register int i=1;i<=n;i++)fac[i]=1ll*fac[i-1]*i%mod;
bin[0]=1;for(register int i=1;i<=n;i++)bin[i]=2ll*bin[i-1]%mod;
ans=fac[n];
for(register int i=1;i<=n;i++)
if(!vis[i]){
num=0;pd=false;DFS(i);
if(num==1)n0++;
else if(num==2){if(d[i]&&w[i])n3++;else if(d[i])n1++;else n2++;}
else if(pd)g[num]++;else f[num][opt]++;
}
tot=fac[n0];
tot=1ll*tot*fac[n1]%mod*bin[n1]%mod;
tot=1ll*tot*fac[n2]%mod*bin[n2]%mod;
tot=1ll*tot*fac[n3]%mod*bin[n3]%mod;
for(register int i=3;i<=n;i++)
if(i&1)tot=1ll*tot*fac[f[i][0]+f[i][1]]%mod;
else tot=1ll*tot*fac[f[i][0]]%mod*bin[f[i][0]]%mod*fac[f[i][1]]%mod*bin[f[i][1]]%mod;
for(register int i=4;i<=n;i+=2)
tot=1ll*tot*fac[g[i]]%mod*fas(i,g[i])%mod;
ans=Minus(ans-tot);
printf("%d\n",ans);
return 0;
}

曾有两次

问题描述

HZOJ1312

题解

不会

20191003 「HZOJ NOIP2019 Round #8」20191003模拟的更多相关文章

  1. 20191004 「HZOJ NOIP2019 Round #9」20191004模拟

    综述 第一次 rk1 ,激动. 题目是 COCI 18/19 Round #1 的三至五题. 得分 \(100+100+20\) \(\mathrm{cipele}\) 问题描述 HZOJ1313 题 ...

  2. 20191102 「HZOJ NOIP2019 Round #12」20191102模拟

    先开坑. md原题写挂我也真是... 100+20+10 白夜 打表大法吼 显然,不在环上的点对答案的贡献是 \((k-cycle)^{k-1}\) . 打表得到环上的递推式,矩阵一下乘起来就好了. ...

  3. 20190922 「HZOJ NOIP2019 Round #7」20190922模拟

    综述 这次是USACO2019JAN Gold的题目. \(\mathrm{Cow Poetry}\) 题解 因为每句诗的长度一定是\(k\),所以自然而然想到背包. 设\(opt[i][j]\)代表 ...

  4. 「LibreOJ NOI Round #2」不等关系

    「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...

  5. LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿

    二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...

  6. 「LibreOJ NOIP Round #1」旅游路线

    Description T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n.每条道路连接这 nnn 个景区中的某两个景 ...

  7. 「LibreOJ NOI Round #1」验题

    麻烦的动态DP写了2天 简化题意:给树,求比给定独立集字典序大k的独立集是哪一个 主要思路: k排名都是类似二分的按位确定过程. 字典序比较本质是LCP下一位,故枚举LCP,看多出来了多少个独立集,然 ...

  8. #509. 「LibreOJ NOI Round #1」动态几何问题

    下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...

  9. LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)

    哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...

随机推荐

  1. 【day09】PHP

    一.函数 1. 作用域(Scope) (1)局部变量:变量在声明的代码段中有效 a.动态变量 b.静态变量:static ,用在函数中,当调用函数后内存不释放,能存储变量的最后的值. (2)全局变量: ...

  2. github README.md创建不了

    在项目主页上,点击‘Add a README’按钮,如下图: 进入编辑界面,编辑好内容后,提交按钮的状态为灰化不可点击,如下图: 不知道为什么会出现这种情况,但是我无意中点击了Ctrl+Enter竟然 ...

  3. 用 PHP 函数变量数组改变代码结构

    项目越做越大,代码越来越乱,维护困难.原因很多吧.起初为了实现功能,并没有注重代码的结构,外包公司嘛.虽然公司的项目负责人一直考虑复用.封装,但是我觉得基本上没有达到想要的效果.因为整个代码中没有用到 ...

  4. 软件----- idea 配置创建一个简单javase项目

    1.显示工具栏和工具按钮,勾选上 如图,在左侧会增加对应的 2.设置项目结构,选择jdk 点击new  选择需要jdk 3.创建一个简单的java文件,和eclipse与myeslipse 差不多, ...

  5. python yield from (一)

    1. yield from 会抛出iterator中所有的值:而yield只是抛出传进来的值,如果是值,就抛出值,如果是iterator对象,抛出iterator对象 def g1(iterable) ...

  6. [STL] UVA 10815 安迪的第一个字典 Andy's First Dictionary

    1.set 集合 哦....对了,set有自动按照字典序排序功能..... 声明和插入操作 #include <cstdio> #include <vector> #inclu ...

  7. javascript模块化编程思想、实现与规范

    随着BS架构的发展,网站逐渐变成了互联网应用程序,嵌入网络的JavaScript代码越来越庞大,越来越复杂(业务逻辑处理或用户交互很多写在前端).网页越来越像桌面程序,需要一个团队分工协作.进度管理. ...

  8. 微软宣布.NET Native预览版 C#可编译为本地机器码【转】

    英文原文:Announcing .NET Native Preview 微软在 MSDN 博客上宣布了 .NET Native 的开发者预览版..NET Native 可以将 C# 代码编译成本地机器 ...

  9. 嵌入式Linux+NetCore 笔记一

    记录嵌入式Linux+NetCore培训中遇到的一些问题以及解决方法 十一放假期间发现园里大神大石头(NewLife团队)开了一个嵌入式Linux+NetCore培训,就报名参加了.更幸运的是,我刚好 ...

  10. jsonp格式前端发送和后台接受写法

    jsonp是ajax提交的一种格式不会受跨域限制 一.前端发送 <button>11111</button> <script src="https://cdn. ...