P2340 奶牛会展 DP

\(n\)头牛,每头牛有智商\(s[i]\)情商\(f[i]\),问如何从中选择几头牛使得智商情商之和最大 且 情商之和、智商之和非负

\(n\le 400,-10^3\le s[i] \le 10^3\)

看似两维难以处理,我们可以先考虑一维,做体积为智商、价值为情商的01背包,最后遍历体积不为负的状态更新答案即可。

需要注意的是,体积可能为负,所以我们整体加\(400\times1000\);负数体积遍历背包时,因为已经压缩了一维,原本要倒序遍历体积,但是这里是负数,所以要正序遍历(否则会覆盖之前的状态)

另外这里的背包体积是恰好填满,所以初值要全部设为-INF,而不是\(0\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline int read(){
char ch=getchar();int s=0;
bool isf=0;
while((ch<'0'||ch>'9')&&(ch!='-')) ch=getchar();
if(ch=='-'){ch=getchar();isf=1;}
while(ch>='0'&&ch<='9') s=s*10+(ch^'0'), ch=getchar();
if(isf) return -s;
return s;
}
#define MAXN 404
#define BASE 400*1000
int n;
int s[MAXN],f[MAXN];
int dp[800008];
int main(){
n=read();
int mxs=0;
for(int i=1;i<=n;++i) s[i]=read(),f[i]=read(),mxs+=s[i];
memset(dp, -0x3f, sizeof dp);
dp[BASE]=0;
for(int i=1;i<=n;++i){
if(s[i]>=0)
for(int j=BASE+mxs;j>=s[i];--j)
dp[j]=max(dp[j], dp[j-s[i]]+f[i]);
else
for(int j=s[i];j<=BASE+mxs;++j)
dp[j]=max(dp[j], dp[j-s[i]]+f[i]);
}
int ans=0;
for(int i=BASE;i<=mxs+BASE;++i)
if(dp[i]>=0)
ans=max(ans, i-BASE+dp[i]);
printf("%d\n", ans);
return 0;
}

P2340 奶牛会展 DP 背包的更多相关文章

  1. P2340 奶牛会展(状压dp)

    P2340 奶牛会展 题目背景 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行 了面试,确定了每头奶牛的智商和情商. 题目描述 贝西有权选择让哪些奶牛参加展览.由 ...

  2. [USACO]奶牛会展(背包)

    [USACO]奶牛会展 题目背景 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行 了面试,确定了每头奶牛的智商和情商. 题目描述 贝西有权选择让哪些奶牛参加展览. ...

  3. 洛谷P2340 奶牛会展

    题目背景 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行 了面试,确定了每头奶牛的智商和情商. 题目描述 贝西有权选择让哪些奶牛参加展览.由于负的智商或情商会造成 ...

  4. 【题解】 洛谷P2340 奶牛会展

    传送门 重新开始打代码Day1 第一眼看感觉不对啊,这道题目好像空间开不下,是不是不能dp... 后来想到了一个思路,他要求的是\(dp_{i,j,k}=j+k\),然后这样子不是很奇怪吗? 直接一维 ...

  5. 【Luogu】P2340奶牛会展

    题目链接 突发奇想可以用f[i]表示智商和为i的时候情商最大是多少.这样就变成了一个背包问题. 最后更新答案的时候从0到最大背包容量遍历,最后答案是最大的i+f[i]; 但是虽然答案只能从0到m里选, ...

  6. 【洛谷P2340】 奶牛会展

    \(奶牛会展\) 题目链接 由于智商之和或情商之和不能为负数,所以直接把智商+情商>0的奶牛加上是布星的 我们考虑背包,不妨将智商当做物品大小,将情商当做价值 我们要求 大小+价值 的最大值 \ ...

  7. 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp

    题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...

  8. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  9. URAL_1018 Binary Apple Tree 树形DP+背包

    这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...

随机推荐

  1. java之mybatis之配置文件讲解

    1.核心配置文件 <configuration> <!-- 它们都是外部化,可替代的属性.可以配置在一个典型的Java 属性文件中,或者通过 properties 元素的子元素进行配 ...

  2. ASP.NET MVC 页面静态化操作的思路

    本文主要讲述了在asp.net mvc中,页面静态化的几种思路和方法.对于网站来说,生成纯html静态页面除了有利于seo外,还可以减轻网站的负载能力和提高网站性能.在asp.net mvc中,视图的 ...

  3. SpringbBoot之JPA批量更新

    菜鸟学习,不对之处,还请纠正. 需要批量更新数据库的某些数据,项目使用的是JPA,刚对mybatis熟悉一点,又换成了JPA... 有点懵. 查询了一番之后,发现可以使用 In findByIdIn( ...

  4. spring boot 分布式锁组件 spring-boot-klock-starter

    基于redis的分布式锁spring-boot starter组件,使得项目拥有分布式锁能力变得异常简单,支持spring boot,和spirng mvc等spring相关项目 快速开始 sprin ...

  5. python入门基础思维导图

  6. Microsoft Project项目管理工具

    下载 网址 安装 要注意以前安装的32位的Office或者Visio时这里会检测到,这里也要装32位的.不能根据系统位数来了.下载前先看清你用的Microsoft的软件是什么版本. 使用 新建空白项目 ...

  7. pandas-03 DataFrame()中的iloc和loc用法

    pandas-03 DataFrame()中的iloc和loc用法 简单的说: iloc,即index locate 用index索引进行定位,所以参数是整型,如:df.iloc[10:20, 3:5 ...

  8. python的常见内置模块之-----time

    1.time模块 a.时间戳:print(time.time())  从1970年到现在的时间,秒数 import time print(time.time()) >>>157448 ...

  9. vue中引入mui报Uncaught TypeError: 'caller', 'callee', and 'arguments' properties may not be accessed on strict mode functions or the arguments objects for calls to them的错误

    在vue中引入mui的js文件的时候,报如下的错误: 那是因为我们在用webpack打包项目时默认的是严格模式,我们把严格模式去掉就ok了 第一步:npm install babel-plugin-t ...

  10. Linux 系统安全相关

    本篇关于Linux的一些安全知识,主要就是与账号相关的安全. 账户文件锁定 当服务器中的用户账号已经固定,不在进行更改,可锁定账户文件.锁定后,无法添加.删除账号,也无法更改密码等. 锁定账户文件 c ...