【BZOJ4833】最小公倍佩尔数(min-max容斥)
【BZOJ4833】最小公倍佩尔数(min-max容斥)
题面
题解
首先考虑怎么求\(f(n)\),考虑递推这个东西
\((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2)=e(n)+f(n)\sqrt 2\)
拆开之后可以得到:\(e(n)=e(n-1)+2f(n-1),f(n)=f(n-1)+e(n-1)\)。
把每一层的\(e\)都给展开,得到:\(\displaystyle f(n)=1+f(n-1)+2\sum_{i=1}^{n-2}f(i)\)
然后差分搞搞,\(\displaystyle f(n)-f(n-1)=f(n-1)-f(n-2)+2*f(n-2)\)。
得到\(f(n)=2f(n-1)+f(n-2)\),特殊的\(f(0)=0,f(1)=1\)。
然后我们发现要求\(lcm\),那么就先考虑\(f(a)\)和\(f(b)\)的\(gcd\)是什么。
这个东西显然可以类似斐波那契数列那样子利用辗转相减得到\(gcd(f(a),f(b))=f(gcd(a,b))\)。
接下来就可以考虑怎么求答案了。
然后\(lcm\)的式子是对于每个质因子,考虑其\(max\)。
考虑\(min-max\)容斥,把\(max\)变成\(min\),那么就可以从\(lcm\)变成\(gcd\)。
然后把\(min-max\)容斥的式子给写出来:
\]
套到\(lcm\)上就是:
\]
那么就有
\]
上面那个指数看着就可以莫比乌斯反演一下之类的,然后令上面那一堆东西是\(a[i]\),然后令\(b[i]=\sum_{i|d}a[d]\)这个系数稍微推一下,得到:
\]
这个值显然之和是否存在\(i\)倍数的数相关,存在就是\(1\),没有就是\(0\)。
而莫比乌斯反演可以得到
\]
再把这个东西带回去
g[n]&=\prod_{i=1}^n f_i^{a[i]}\\
&=\prod_{i=1}^n f_i^{\sum_{i|d}\mu(\frac{d}{i})b[d]}\\
&=\prod_{i=1}^n\prod_{i|d}f_i^{\mu(\frac{d}{i})b[d]}
\end{aligned}\]
因为\(d\)的范围在\(n\)以内,所以必定存在\(d\)的倍数,所以\(b[d]=1\),那么只需要提前一个\(log\)预处理后面一半就行了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,MOD;
bool zs[MAX];
int pri[MAX],mu[MAX],tot;
int f[MAX],g[MAX],s[MAX],inv[MAX];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Sieve(int n)
{
mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{mu[i*pri[j]]=0;break;}
}
}
}
int main()
{
Sieve(MAX-1);
int T=read();
while(T--)
{
n=read();MOD=read();
f[1]=1;for(int i=2;i<=n;++i)f[i]=(2ll*f[i-1]+f[i-2])%MOD;
for(int i=1;i<=n;++i)s[i]=1,inv[i]=fpow(f[i],MOD-2);
for(int i=1;i<=n;++i)
for(int j=i;j<=n;j+=i)
if(mu[j/i]==1)s[j]=1ll*s[j]*f[i]%MOD;
else if(mu[j/i]==-1)s[j]=1ll*s[j]*inv[i]%MOD;
g[0]=1;for(int i=1;i<=n;++i)g[i]=1ll*g[i-1]*s[i]%MOD;
int ans=0;for(int i=1;i<=n;++i)ans=(ans+1ll*g[i]*i)%MOD;
printf("%d\n",ans);
}
}
【BZOJ4833】最小公倍佩尔数(min-max容斥)的更多相关文章
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 240 Solved: 118[Submit][S ...
- [Lydsy1704月赛] 最小公倍佩尔数
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 202 Solved: 99[Submit][St ...
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数
Problem 传送门 Sol 容易得到 \[f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1\] 那么 \[f_n=2\times \sum ...
- BZOJ 4833: [Lydsy1704月赛]最小公倍佩尔数(数论 + 最值反演)
题面 令 \({(1+\sqrt 2)}^n=e(n)+f(n)*\sqrt2\) ,其中 \(e(n),f(n)\) 都是整数,显然有 \({(1-\sqrt 2)}^n=e(n)-f(n)*\sq ...
- 【bzoj 4833】[Lydsy1704月赛]最小公倍佩尔数
Description 令 $(1+\sqrt 2)^n=e(n)+\sqrt 2\cdot f(n)$ ,其中 $e(n),f(n)$ 都是整数,显然有 $(1-\sqrt 2)^n=e(n)-\s ...
- [bzoj 4833]最小公倍佩尔数
传送门 Description Let \((1+\sqrt2)^n=e(n)+f(n)\cdot\sqrt2\) , both \(e(n)\) and \(f(n)\) are integer ...
- BZOJ2440(全然平方数)二分+莫比乌斯容斥
题意:全然平方数是指含有平方数因子的数.求第ki个非全然平方数. 解法:比較明显的二分,getsum(int middle)求1-middle有多少个非全然平方数,然后二分.求1-middle的非全然 ...
- YYHS-分数(二分+容斥)
题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子 ...
- Luogu5206 【WC2019】数树 【容斥,生成函数】
题目链接 第一问白给. 第二问: 设 \(b=y^{-1}\),且以下的 \(Ans\) 是除去 \(y^n\) 的. 设 \(C(T)\) 是固定了 \(T\) 中的边,再连 \(n-|T|-1\) ...
随机推荐
- 虚拟机中安装Kali遇到的问题及解决方法
title: 虚拟机中安装Kali遇到的问题及解决方法 date: 2018-11-25 12:25:43 tags: 安全 --- 关于Kali版本选择 kail官方下载页面 虚拟机中当然就下载虚拟 ...
- Android自定义圆角矩形进度条2
效果图: 或 方法讲解: (1)invalidate()方法 invalidate()是用来刷新View的,必须是在UI线程中进行工作.比如在修改某个view的显示时, 调用invalidate()才 ...
- LeetCode学习_day1:原地算法
原地算法:是一种使用小的,固定数量的额外之空间来转换资料的算法.当算法执行时,输入的资料通常会被要输出的部份覆盖掉. 范例:冒泡排序.选择排序.插入排序.希尔排序 (1)冒泡排序: 冒泡排序算法的原理 ...
- 修改host指定域名指向ip,Windows脚本与Linux脚本
修改host指定域名指向ip,Windows脚本与Linux脚本 一,Windows系统修改hosts文件 Windows系统下hosts文件位置:C:\Windows\System32\driver ...
- 爬虫---Beautiful Soup 爬取图片
上一篇简单的介绍Beautiful Soup 的基本用法,这一篇写下如何爬取网站上的图片,并保存下来 爬取图片 1.找到一个福利网站:http://www.xiaohuar.com/list-1-1. ...
- woocommerce调用分类描述另一种方法
woocommerce是在wordpress基础上开发的,有些函数是通用的,有些需要自己调用,比如文章分类用category_description()就可以调用,而woocommerce的产品分类描 ...
- BIO/NIO/AIO的区分(十四)
BIO:同步阻塞IO(平常说的IO指的是BIO)NIO:同步非阻塞IOAIO:异步非阻塞IO io操作分为两部分,发起io请求,和io数据读写. 阻塞.非阻塞主要是针对线程发起io请求后,是否立即返回 ...
- LG3812 「模板」线性基 线性基
问题描述 LG3812 题解 线性基是一类擅长解决异或问题的数据结构(也不算数据结构吧...就是一种玄学的东西) 对于数列 \(a\) ,它的线性基 \(d\) 为 出现 \(1\) 的最高位在第 \ ...
- NeuHub图像垃圾分类api和百度图像识别api
京东 NeuHub图像垃圾分类申请:http://neuhub.jd.com/gwtest/init/242 文档:https://aidoc.jd.com/image/garbageClassifi ...
- 区块链自问自答 day2
区块链自问自答 day2 区块链的自治性是如何达成的?为什么能够在去信任的环境下自由安全地交换数据? 区块链中有众多的节点,包含了恶意节点.故障节点.正常节点,想要这些节点共同做出一致的决定就需要 ...