【BZOJ4833】最小公倍佩尔数(min-max容斥)

题面

BZOJ

题解

首先考虑怎么求\(f(n)\),考虑递推这个东西

\((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2)=e(n)+f(n)\sqrt 2\)

拆开之后可以得到:\(e(n)=e(n-1)+2f(n-1),f(n)=f(n-1)+e(n-1)\)。

把每一层的\(e\)都给展开,得到:\(\displaystyle f(n)=1+f(n-1)+2\sum_{i=1}^{n-2}f(i)\)

然后差分搞搞,\(\displaystyle f(n)-f(n-1)=f(n-1)-f(n-2)+2*f(n-2)\)。

得到\(f(n)=2f(n-1)+f(n-2)\),特殊的\(f(0)=0,f(1)=1\)。

然后我们发现要求\(lcm\),那么就先考虑\(f(a)\)和\(f(b)\)的\(gcd\)是什么。

这个东西显然可以类似斐波那契数列那样子利用辗转相减得到\(gcd(f(a),f(b))=f(gcd(a,b))\)。

接下来就可以考虑怎么求答案了。

然后\(lcm\)的式子是对于每个质因子,考虑其\(max\)。

考虑\(min-max\)容斥,把\(max\)变成\(min\),那么就可以从\(lcm\)变成\(gcd\)。

然后把\(min-max\)容斥的式子给写出来:

\[max(S)=\sum_{T\subset S}(-1)^{|T|+1}min(T)
\]

套到\(lcm\)上就是:

\[lcm(S)=\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}
\]

那么就有

\[g(n)=\prod_{T\subset S}f_{gcd(T)}^{(-1)^{|T|+1}}=\prod_{i=1}^n f_i^{\sum_{T\subset S}[gcd(T)=i](-1)^{|T|+1}}
\]

上面那个指数看着就可以莫比乌斯反演一下之类的,然后令上面那一堆东西是\(a[i]\),然后令\(b[i]=\sum_{i|d}a[d]\)这个系数稍微推一下,得到:

\[b[i]=\sum_{i|d}a[d]=\sum_{T\subset S}[i|gcd(T)](-1)^{|T|+1}
\]

这个值显然之和是否存在\(i\)倍数的数相关,存在就是\(1\),没有就是\(0\)。

而莫比乌斯反演可以得到

\[a[i]=\sum_{i|d}\mu(\frac{d}{i})b[d]
\]

再把这个东西带回去

\[\begin{aligned}
g[n]&=\prod_{i=1}^n f_i^{a[i]}\\
&=\prod_{i=1}^n f_i^{\sum_{i|d}\mu(\frac{d}{i})b[d]}\\
&=\prod_{i=1}^n\prod_{i|d}f_i^{\mu(\frac{d}{i})b[d]}
\end{aligned}\]

因为\(d\)的范围在\(n\)以内,所以必定存在\(d\)的倍数,所以\(b[d]=1\),那么只需要提前一个\(log\)预处理后面一半就行了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,MOD;
bool zs[MAX];
int pri[MAX],mu[MAX],tot;
int f[MAX],g[MAX],s[MAX],inv[MAX];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Sieve(int n)
{
mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{mu[i*pri[j]]=0;break;}
}
}
}
int main()
{
Sieve(MAX-1);
int T=read();
while(T--)
{
n=read();MOD=read();
f[1]=1;for(int i=2;i<=n;++i)f[i]=(2ll*f[i-1]+f[i-2])%MOD;
for(int i=1;i<=n;++i)s[i]=1,inv[i]=fpow(f[i],MOD-2);
for(int i=1;i<=n;++i)
for(int j=i;j<=n;j+=i)
if(mu[j/i]==1)s[j]=1ll*s[j]*f[i]%MOD;
else if(mu[j/i]==-1)s[j]=1ll*s[j]*inv[i]%MOD;
g[0]=1;for(int i=1;i<=n;++i)g[i]=1ll*g[i-1]*s[i]%MOD;
int ans=0;for(int i=1;i<=n;++i)ans=(ans+1ll*g[i]*i)%MOD;
printf("%d\n",ans);
}
}

【BZOJ4833】最小公倍佩尔数(min-max容斥)的更多相关文章

  1. BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)

    4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 240  Solved: 118[Submit][S ...

  2. [Lydsy1704月赛] 最小公倍佩尔数

    4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 202  Solved: 99[Submit][St ...

  3. BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数

    Problem 传送门 Sol 容易得到 \[f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1\] 那么 \[f_n=2\times \sum ...

  4. BZOJ 4833: [Lydsy1704月赛]最小公倍佩尔数(数论 + 最值反演)

    题面 令 \({(1+\sqrt 2)}^n=e(n)+f(n)*\sqrt2\) ,其中 \(e(n),f(n)\) 都是整数,显然有 \({(1-\sqrt 2)}^n=e(n)-f(n)*\sq ...

  5. 【bzoj 4833】[Lydsy1704月赛]最小公倍佩尔数

    Description 令 $(1+\sqrt 2)^n=e(n)+\sqrt 2\cdot f(n)$ ,其中 $e(n),f(n)$ 都是整数,显然有 $(1-\sqrt 2)^n=e(n)-\s ...

  6. [bzoj 4833]最小公倍佩尔数

    传送门 Description   Let \((1+\sqrt2)^n=e(n)+f(n)\cdot\sqrt2\) , both \(e(n)\) and \(f(n)\) are integer ...

  7. BZOJ2440(全然平方数)二分+莫比乌斯容斥

    题意:全然平方数是指含有平方数因子的数.求第ki个非全然平方数. 解法:比較明显的二分,getsum(int middle)求1-middle有多少个非全然平方数,然后二分.求1-middle的非全然 ...

  8. YYHS-分数(二分+容斥)

    题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子 ...

  9. Luogu5206 【WC2019】数树 【容斥,生成函数】

    题目链接 第一问白给. 第二问: 设 \(b=y^{-1}\),且以下的 \(Ans\) 是除去 \(y^n\) 的. 设 \(C(T)\) 是固定了 \(T\) 中的边,再连 \(n-|T|-1\) ...

随机推荐

  1. python基础编程——类和实例

    在了解类和实例之前,需要先了解什么是面向对象,什么又是面向过程.面向过程是以过程为中心实现一步步操作(相互调用,类似流水线思想):面向对象是以事物为中心,某个事物可以拥有自己的多个行为,而另一个事物也 ...

  2. 高性能TcpServer(C#) - 4.文件通道(处理:文件分包,支持断点续传)

    高性能TcpServer(C#) - 1.网络通信协议 高性能TcpServer(C#) - 2.创建高性能Socket服务器SocketAsyncEventArgs的实现(IOCP) 高性能TcpS ...

  3. 第1篇Scrum冲刺博客

    目录 第1篇Scrum冲刺博客 各个成员在 Alpha 阶段认领的任务 各个成员的任务安排 整个项目预期的任务量 敏捷开发前的感想 团队期望 第1篇Scrum冲刺博客 各个成员在 Alpha 阶段认领 ...

  4. NoSuchMethodError 常见原因及解决方法

    相 关 阅 读 导读 『StabilityGuide』是阿里多位阿里技术工程师共同发起的稳定性领域的知识库开源项目,涵盖性能压测.故障演练.JVM.应用容器.服务框架.流量调度.监控.诊断等多个技术领 ...

  5. RDD源码分析

    RDD源码解析 一. RDD.scala - Resilient Distributed Dataset (RDD) 弹性分布式数据集 弹性: 体现在计算上面 - the basic abstract ...

  6. JDBC及C3P0常用类

    JDBC(Java Database Connectivity)JAVA数据库连接,它是一套用于执行SQL语句的Java API.JDBC可以通过不同驱动与不同数据库连接,相当于JAVA和数据库之间的 ...

  7. [TCP/IP] TCP报文长度是由什么确定的

    MTU:最大传输单元,以太网的MTU为1500Bytes MSS:最大分解大小,为每次TCP数据包每次传输的最大数据的分段大小,由发送端通知接收端,发送大于MTU就会被分片 TCP最小数据长度为146 ...

  8. 【Linux】-- 认识bash shell

    一.前言 我们知道管理整个计算机硬件的其实是系统的内核,这个内核是需要被保护的,所以我们一般用户就只能通过shell来跟内核通信,以让内核达到我们所想要达到的工作.那么Linux系统有多少shell可 ...

  9. toString的本质 以及String.valueOf()

    Object可以用toString转为字符串. Object.toString(); 但char[]不行,得用valueOf. String.valueOf(char[]); 如果用toString, ...

  10. 4.Spark环境搭建和使用方法

    一.安装Spark spark和Hadoop可以部署在一起,相互协作,由Hadoop的HDFS.HBase等组件复制数据的存储和管理,由Spark负责数据的计算. Linux:CentOS Linux ...